摘要:
A power generation system of the present invention comprises: a power generation unit (1); a casing (2) that accommodates the power generation unit (1); a ventilator (3) that ventilates the interior of the casing (2); a first gas flow passage (5), arranged inside the casing (2), for a flow therethrough of gas which flows as the ventilator (3) operates; and a second gas flow passage (6), arranged inside the casing (2), for a flow therethrough of combustion exhaust gas from the power generation unit (1), wherein within the casing (2), the second gas flow passage (6) merges into the first gas flow passage (5).
摘要:
A fuel cell system according to the present invention comprises a hydrogen generator including a burner which is detachably accommodated in the hydrogen generator in a manner to allow the burner to be detached from and attached to the hydrogen generator through the top of the hydrogen generator, a stack configured to generate power by causing hydrogen generated by the hydrogen generator and an oxidizing gas to react with each other, and a main body package which includes at least a top plate and within which the hydrogen generator and the stack are disposed. Detachable piping, which is detachably configured, is provided above the hydrogen generator. Space that is formed above the burner when the detachable piping is removed from the main body package has a size larger than or equal to the size of the burner.
摘要:
The possibility of carbon deposition from a raw material gas is made lower than before in a pressure compensating operation carried out after stopping the stop process of a hydrogen generator and a fuel cell system including the hydrogen generator.The hydrogen generator includes: a raw material supply unit (102, 103) configured to function to block supply of a raw material; a steam supply unit (104, 105) configured to function to block supply of steam; a reformer 108 including a reforming catalyst 109 and configured to generate a hydrogen-containing gas by using the raw material supplied from the raw material supply unit and the steam supplied from the steam supply unit; a closing unit 116 configured to block at least a gas passage provided downstream of the reformer; and a controller 140 configured to execute a pressure compensating operation in which: during stop of the hydrogen generator, with hydrogen contained in the reformer, the supply of the raw material from the raw material supply unit and the supply of the steam from the steam supply unit are blocked, and the closing unit is closed; and to compensate a pressure decrease in the reformer due to a temperature decrease in the reformer after the closing of the closing unit, with the hydrogen contained in the reformer, the steam is supplied from the steam supply unit to the reformer.
摘要:
A power generation system according to the present invention includes: a fuel cell unit including a fuel cell, a hydrogen generator having a first combustor, and a case; a controller; a combustion unit including a second combustor; and a discharge passage formed to cause the case and the combustion unit to communicate with each other. In a case where the controller causes one of the first combustor and the second combustor to perform the ignition operation, the controller maintains an operating state of the other combustor during the period of the ignition operation of the one combustor.
摘要:
A power generation system of the present invention comprises a fuel cell system (101), a gas supply device, a controller (102), a combustion device (103), an exhaust passage (70), a gas passage used to supply a gas supplied from the gas supply device to the exhaust passage (70), and a back-flow preventing device (20) placed in the gas passage or the exhaust passage (70), and the controller (102) executes an operation for relieving a state in which a valve element remains incapable of moving away from a valve seat in the back-flow preventing device (20) in such a manner that the gas supply device is operated so that a differential pressure between an upstream side and a downstream side of the back-flow preventing device (20) becomes a value equal to or greater than the predetermined time which can relieve the state in which valve element remains incapable of moving away from the valve seat, during a shut-down state or at start-up of the fuel cell system (101).
摘要:
A hydrogen generation device or a fuel cell system of the present invention can prevent deterioration or breakage of portions of the hydrogen generation device, which is caused by thermal stress attributable to repeated operation and halt. Thus, it is possible to increase the life and enhance the stability of the device and the system.A hydrogen generation device 76 of a fuel cell system 100 includes a hydrogen generation device main body 78 including a combustor 4 provided therein for combusting a predetermined medium capable of generating hydrogen and a plurality of pipes which are connected to the hydrogen generation device main body 78 for allowing the predetermined medium flow into or out of the hydrogen generation device main body 78. A temperature gradient is formed in the hydrogen generation device main body 78 by operation of the combustor 4, whereby a high temperature portion and a low temperature portion are formed in the hydrogen generation device main body 78. All of the plurality of pipes are arranged in the low temperature portion. A support 70 supports the hydrogen generation device main body 78 from an outside of the low temperature portion.
摘要:
A fuel cell system includes: a fuel cell (1) configured to generate electric power by a reaction between fuel and an oxidizing agent; a cooling passage (3) through which a first heat medium for cooling down the fuel cell (1) flows; a heat exchanger (5) disposed on the cooling passage (3); and an exhaust heat recovery passage (7) through which a second heat medium which exchanges heat with the first heat medium by the heat exchanger (5) flows, wherein a deceleration portion (7c) configured to reduce a flow velocity of the second heat medium and a bubble release portion (7d) configured to discharge bubbles in the deceleration portion (7c) to an outside of the exhaust heat recovery passage (7) are disposed on the exhaust heat recovery passage (7).
摘要:
A power generation system of the present invention includes: a fuel cell unit (101) including a fuel cell (11) and a case (12); a controller (102); a combustion unit (103) provided outside the case (12) and configured to combust a combustible gas to supply heat; and a discharge passage (70) configured to cause the fuel cell unit (101) and the combustion unit (103) to communicate with each other, wherein in a case where an exhaust gas is being discharged to the discharge passage (70) from one of the fuel cell unit (101) and the combustion unit (103) and the controller (102) changes the flow rate of the exhaust gas discharged from the other unit, the controller (102) controls at least the flow rate of the exhaust gas discharged from the other unit such that the flow rate of the exhaust gas discharged from the one unit becomes constant.
摘要:
A power generation system has a power generation unit (1), a casing (2) accommodating the power generation unit (1), a ventilator (3) configured to ventilate the interior of the casing (2), and a first exhaust gas passage (4) configured to pass therethrough an exhaust gas from the ventilator (3) which is discharged out of the casing (2). The first exhaust gas passage (4) merges with a second exhaust gas passage (6) connected to a duct (11) open to outside air before the second exhaust gas passage (6) is connected to the duct (11), the second exhaust gas passage (6) being configured to pass a combustion exhaust gas from a combustion device (5) configured to generate heat to be supplied to a heat load.
摘要:
A power generation system of the present invention comprises a fuel cell system (101), a gas supply device, a controller (102), a combustion device (103), an exhaust passage (70), a gas passage used to supply a gas supplied from the gas supply device to the exhaust passage (70), and a back-flow preventing device (20) placed in the gas passage or the exhaust passage (70), and the controller (102) executes an operation for relieving a state in which a valve element remains incapable of moving away from a valve seat in the back-flow preventing device (20) in such a manner that the gas supply device is operated so that a differential pressure between an upstream side and a downstream side of the back-flow preventing device (20) becomes a value equal to or greater than the predetermined time which can relieve the state in which valve element remains incapable of moving away from the valve seat, during a shut-down state or at start-up of the fuel cell system (101).