Abstract:
Inconsistencies between internal logical names assigned to hardware devices and physical labeling of the hardware device connectors are overcome by reassigning internal logical names in a network appliance hosting the hardware devices. The initial logical names that refer to the hardware devices are read from an operating system, along with hardware addresses for the hardware devices. The relationship between the initial logical names and the hardware device addresses is compared against a desired relationship, as may be provided in a configuration file. Undesired relationships between logical names and hardware devices are reassigned so that the logical names are consistent with the physical labeling for the hardware devices. The reassigned logical names can be committed to system resources to make the reassignment persistent.
Abstract:
Inconsistencies between internal logical names assigned to hardware devices and physical labeling of the hardware device connectors are overcome by reassigning internal logical names in a network appliance hosting the hardware devices. The initial logical names that refer to the hardware devices are read from an operating system, along with hardware addresses for the hardware devices. The relationship between the initial logical names and the hardware device addresses is compared against a desired relationship, as may be provided in a configuration file. Undesired relationships between logical names and hardware devices are reassigned so that the logical names are consistent with the physical labeling for the hardware devices. The reassigned logical names can be committed to system resources to make the reassignment persistent.
Abstract:
An optical channel waveguide having a reflection grating and a related method for its fabrication. The grating is apodized to provide a desired reflection or transmission spectral characteristic, by varying the grating width along the length of the grating in the direction of light propagation. The grating has multiple parallel elements extending across the waveguide channel width, and apodization is effected by appropriate selection of the width of each element relative to the width of the channel, without varying the grating duty cycle or other parameters.