摘要:
Provided is an exhaust gas purification device that ensures an improved purification performance and a suppressed pressure loss. An exhaust gas purification device of the present disclosure includes a honeycomb substrate and an inflow cell side catalyst layer. disposed on a surface on the inflow cell side in an inflow side region of the partition wall. When a gas permeability coefficient of an inflow side partition wall portion including the inflow side region of the partition wall and the inflow cell side catalyst layer is Ka and a gas permeability coefficient of an outflow side partition wall portion including an outflow side region at least from the predetermined position to an outflow side end of the partition wall is Kb, a ratio Ka/Kb of the gas permeability coefficients is within a range of 0.4 or more and 0.8 or less.
摘要:
Provided is an exhaust gas purification device that ensures an improved purification performance and a suppressed pressure loss. An exhaust gas purification device of the present disclosure includes a honeycomb substrate and an inflow cell side catalyst layer. disposed on a surface on the inflow cell side in an inflow side region of the partition wall. When a gas permeability coefficient of an inflow side partition wall portion including the inflow side region of the partition wall and the inflow cell side catalyst layer is Ka and a gas permeability coefficient of an outflow side partition wall portion including an outflow side region at least from the predetermined position to an outflow side end of the partition wall is Kb, a ratio Ka/Kb of the gas permeability coefficients is within a range of 0.4 or more and 0.8 or less.
摘要:
There is provided a filter catalyst that has a wall-flow structure, and the filter catalyst has an excellent purification performance. The embodiment is a filter catalyst including a wall-flow type substrate that includes an inlet-side cell, an outlet-side cell, and a partition wall. The inlet-side cell has an open end portion on an exhaust gas flow-in side and a closed end portion on an exhaust gas flow-out side. The outlet-side cell is adjacent to the inlet-side cell and has an open end portion on the exhaust gas flow-out side and a closed end portion on the exhaust gas flow-in side. The partition wall has a porous structure and interposes between the inlet-side cell and the outlet-side cell. The filter catalyst includes an oxygen occlusion portion and a catalyst portion dispersed and disposed in the porous structure. The oxygen occlusion portion is disposed on a wall surface of the porous structure. The catalyst portion is disposed on the oxygen occlusion portion, and the catalyst portion has a surface exposed to a space where an exhaust gas flows including a communication hole.
摘要:
A particulate inorganic oxide containing aluminum oxide, a metal oxide forming no composite oxide with aluminum oxide, and an additional element including at least one of a rare-earth element and an alkali earth element, the inorganic oxide containing a secondary particle formed by aggregating primary particles; wherein at least a part of the secondary particle includes a plurality of first primary particles, each having a particle size of 100 nm or less, containing aluminum oxide and the additional element, and a plurality of second primary particles, each having a particle size of 100 nm or less, containing the metal oxide and the additional element; wherein at least a part of the first and second primary particles has a surface concentrated region where the additional element has a locally increased content in a surface layer part thereof.
摘要:
Provided is an ambient temperature NOx adsorbent. The ambient temperature NOx adsorbent comprises a support and a metal supported on the support. The support comprises at least one metal oxide selected from oxides of Co, Fe, Cu, Ce, Mn, and a combination thereof. The supported metal comprises at least one metal selected from Cu, Co, Ag, Pd, and a combination thereof. The metal oxide is easily changed the oxidation number and has oxygen absorptive/emissive properties. The supported metal has an oxidative activity and is highly adsorptive to NO. Oxygen supplied from the metal oxide converts the supported metal to a peroxidized form of the supported metal. Hence, NO is readily adsorbed to the supported metal at ambient temperature around room temperature. The adsorbed NO is easily oxidized to NO2 by oxygen supplied from the metal oxide or the supported metal in a peroxidized state in the absence of oxygen in an ambient atmosphere. The NO2 is then efficiently adsorbed to the metal oxide. That is, the ambient temperature NOx adsorbent can adsorb a sufficient amount of NOx even at ambient temperature around room temperature.
摘要:
A particulate inorganic oxide contains an aluminum oxide, a metal oxide forming no composite oxide with an aluminum oxide, and at least one additional element selected from the group consisting of rare earth elements and alkaline earth elements. In the inorganic oxide, a percentage content of the aluminum oxide to a total amount of aluminum in the aluminum oxide, a metal element in the metal oxide, and the additional element is in a range from 48 at % to 92 at % in terms of element content. At least 80% of primary particles in the inorganic oxide have a particle diameter of 100 nm or smaller. At least a part of the primary particles have a surface concentrated region where a percentage content of the additional element is locally increased in a surface layer part thereof. The content of the additional element in the surface concentrated region to a whole amount of the inorganic oxide is in a range from 0.06% by mass to 0.98% by mass in terms of oxide amount.
摘要:
A particulate inorganic oxide containing aluminum oxide, a metal oxide forming no composite oxide with aluminum oxide, and an additional element including at least one of a rare-earth element and an alkali earth element, the inorganic oxide containing a secondary particle formed by aggregating primary particles; wherein at least a part of the secondary particle includes a plurality of first primary particles, each having a particle size of 100 nm or less, containing aluminum oxide and the additional element, and a plurality of second primary particles, each having a particle size of 100 nm or less, containing the metal oxide and the additional element; wherein at least a part of the first and second primary particles has a surface concentrated region where the additional element has a locally increased content in a surface layer part thereof.
摘要:
Remote data entry is performed in such a manner that a plurality of entry items and a plurality of data items are caused to collectively enter within one communication and the check sum is calculated simultaneously with the data entry so that abnormality of the data is easily detected even if the contents of the entry data are changed due to the abnormality occurring in a facsimile apparatus. Data is collectively stored in a receiving buffer and a great quantity of data is caused to remote enter if the capacity of the buffer permits. After all remote data entries have been completed, the check sums of all entry memory regions are performed so that the memory capacity of the program code of the check sum is saved.
摘要:
An exhaust gas purification device suppresses a pressure loss increase and includes a honeycomb substrate and inflow cell side catalyst layer. The substrate includes a porous partition wall defining several cells extending from an inflow side end surface to an outflow side end surface. The cells include an inflow and outflow cell adjacent across the wall. The inflow cell has an open inflow side end and sealed outflow side end. The outflow cell has a sealed inflow side end and open outflow side end. The catalyst layer is on an inflow cell side surface in an region extending from the inflow side end positioned 10% or more of the partition wall length. At this position, a filled portion of the inflow cell side catalyst layer pores are 40% or less. The pores are present to a depth of 50% of a thickness of the partition wall.
摘要:
An exhaust gas purification device that allows suppressing an increase in pressure loss is provided. The exhaust gas purification device of the present disclosure includes a honeycomb substrate and an inflow cell side catalyst layer. The substrate includes a porous partition wall which defines inflow cells and outflow cells extending from an inflow side end to an outflow side end. The inflow cell side catalyst layer is disposed on a surface on the inflow cell side in an inflow cell side catalyst region from an inflow side end to a position close to an outflow side end of the partition wall. The permeability of a portion including an outflow side region from the position to the outflow side end of the partition wall is higher than a gas permeability of a portion including the inflow cell side catalyst region of the partition wall and the inflow cell side catalyst layer.