Abstract:
A body fluid sampling system is provided for use on a tissue site. A drive force generator is coupled to penetrating members. The penetrating members are at least partially housed in a penetrating member housing. The penetrating member housing has openings for the penetrating members. The penetrating members are launched along a launch path by the drive force generator through an opening in the penetrating member housing. Analyte sensors are housed in a analyte sensor housing. Each analyte sensor is associated with a penetrating member. The analyte sensor housing and the penetrating member housing are coupled to provide that each analyte sensor is positioned out of a launch path of a penetrating member. The analyte sensor housing includes desiccant pockets for receiving desiccant plugs.
Abstract:
A micro-electromechanical system and method for continuous laminar fluid mixing. An embodiment of the invention described in the specification includes a mixing channel, a first delivery channel that is connected to the mixing channel, and a second delivery channel that is connected to the mixing channel. A first pump mechanism produces pulses in the first delivery channel. A second pump mechanism produces pulses in the second delivery channel. The first pulsed fluid stream and the second pulsed fluid stream merge in the mixing channel to form a mixed fluid. The pulses in the fluids operate to distort the interface between the fluids to facilitate diffusion between the fluids.
Abstract:
A body fluid sampling device includes a housing, a penetrating member positioned in the housing and a test strip. A compliant front end is coupled to the housing. The compliant front-end includes a rigid member with an interior aperture to receive the body fluid from a wound site.
Abstract:
A body fluid sampling system for use on a tissue site includes a drive force generator. A plurality of penetrating members are housed in a penetrating member housing. Each of penetrating member is configured to be coupled to the drive force generator. A plurality of analyte sensors are housed in an analyte sensor housing. Each analyte sensor is associated with a penetrating member. The analyte sensor housing is in a surrounding relationship to the penetrating member housing and positioned to provide that upon launch of a penetrating member, and penetration of a penetrating member at a skin surface, blood flows into the analyte sensor.
Abstract:
A body fluid sampling system is provided for use on a tissue site. A drive force generator is coupled to penetrating members. The penetrating members are at least partially housed in a penetrating member housing. The penetrating member housing has openings for the penetrating members. The penetrating members are launched along a launch path by the drive force generator through an opening in the penetrating member housing. Analyte sensors are housed in a analyte sensor housing. Each analyte sensor is associated with a penetrating member. The analyte sensor housing and the penetrating member housing are coupled to provide that each analyte sensor is positioned out of a launch path of a penetrating member. The analyte sensor housing includes desiccant pockets for receiving desiccant plugs
Abstract:
Methods and apparatus are provided for storing an analyte sampling and measurement device. In one embodiment, an analyte sampling device has a housing and a cartridge having a plurality of penetrating members wherein the penetrating members are slidably movable to extend outward from lateral openings on said cartridge to penetrate tissue, where the sampling device include a plurality of analyte detecting members. The device is fitted with a plurality of gaskets to provide a sealed environment inside the sampling device when the device is not in use. The user can open a lid to allow for lancing and sample capture. The lid is closed to re-establish a sealed condition inside the device once lancing is complete.
Abstract:
A body fluid sampling device includes a housing, a penetrating member positioned in the housing and a test strip. A compliant front end is coupled to the housing. The compliant front-end includes a rigid member with an interior aperture to receive the body fluid from a wound site.
Abstract:
Methods and apparatus are provided for storing used and unused test strips in a desiccated environment. In one embodiment, the method comprises providing an analyte sampling device having a instrument housing and a cartridge having a plurality of penetrating members wherein the penetrating members are slidably movable to extend outward from lateral openings on the cartridge to penetrate tissue, where the sampling device include a plurality of analyte sensing members. The device is designed to use a cassette that will fit inside the device but also contain the cartridge in a desiccated environment. The user may open a lid or access door on the cassette to allow for lancing and sample capture. The lid is closed to re-establish a sealed condition inside the cassette once lancing is complete.