Iterative platform for the synthesis of alpha functionalized products

    公开(公告)号:US11697830B2

    公开(公告)日:2023-07-11

    申请号:US16818642

    申请日:2020-03-13

    摘要: The use of microorganisms to make alpha-functionalized chemicals and fuels, (e.g. alpha-functionalized carboxylic acids, alcohols, hydrocarbons, amines, and their beta-, and omega-functionalized derivatives), by utilizing an iterative carbon chain elongation pathway that uses functionalized extender units. The core enzymes in the pathway include thiolase, dehydrogenase, dehydratase and reductase. Native or engineered thiolases catalyze the condensation of either unsubstituted or functionalized acyl-CoA primers with an alpha-functionalized acetyl-CoA as the extender unit to generate alpha-functionalized β-keto acyl-CoA. Dehydrogenase converts alpha-functionalized β-keto acyl-CoA to alpha-functionalized β-hydroxy acyl-CoA. Dehydratase converts alpha-functionalized β-hydroxy acyl-CoA to alpha-functionalized enoyl-CoA. Reductase converts alpha-functionalized enoyl-CoA to alpha-functionalized acyl-CoA. The platform can be operated in an iterative manner (i.e. multiple turns) by using the resulting alpha-functionalized acyl-CoA as primer and the aforementioned alpha-functionalized extender unit in subsequent turns of the cycle. Termination pathways acting on any of the four alpha-functionalized CoA thioester intermediates terminate the platform and generate various alpha-functionalized carboxylic acids, alcohols and amines with different β-reduction degree.

    Elemental sulfur dissolution and solvation

    公开(公告)号:US11572514B2

    公开(公告)日:2023-02-07

    申请号:US17494470

    申请日:2021-10-05

    IPC分类号: C10G29/28 C11D3/34

    摘要: Methods for preventing elemental sulfur deposition from a hydrocarbon fluid is disclosed. A mercaptan is added to a hydrocarbon fluid that has elemental sulfur and reacted with the elemental sulfur to produce a disulfide and hydrogen sulfide. Amines and/or surfactants can assist with the process. Secondary reactions between the disulfide and the elemental sulfur result in a polysulfide and a solvated sulfur-disulfide complex. The disulfide, hydrogen sulfide, polysulfide and solvated sulfur-disulfide complex do not deposit, and can optionally be removed.

    P and A setting with exothermic material

    公开(公告)号:US11486222B2

    公开(公告)日:2022-11-01

    申请号:US16944727

    申请日:2020-07-31

    发明人: Randall S. Shafer

    摘要: A method of plugging a hydrocarbon well includes deploying a downhole tool to remove at least a portion of a casing at a section of well to be plugged. Deploying a blocking device downhole to block a bottom of the section of well to be plugged. Deploying a plugging material downhole onto the blocking device to fill an area to be plugged. Deploying an exothermic fluid downhole, wherein activation of the exothermic material liquefies the plugging material. Allowing the plugging material and the exothermic fluid to solidify form a cast-in-place plug that fills the section of well to be plugged.

    Crosslinking of swellable polymer with PEI

    公开(公告)号:US11466198B2

    公开(公告)日:2022-10-11

    申请号:US16694004

    申请日:2019-11-25

    摘要: The invention is directed to stable and labile crosslinked water swellable polymeric microparticles that can be further gelled, methods for making same, and their various uses in the hygiene and medical arts, gel electrophoresis, packaging, agriculture, the cable industry, information technology, in the food industry, papermaking, use as flocculation aids, and the like. More particularly, the invention relates to a composition comprising expandable polymeric microparticles having labile crosslinkers and stable crosslinkers, said microparticle mixed with a fluid and an unreacted tertiary crosslinker comprising PEI or other polyamine based tertiary crosslinker that is capable of further crosslinking the microparticle on degradation of the labile crosslinker and swelling of the particle, so as to form a stable gel. A particularly important use is as an injection fluid in petroleum production, where the expandable polymeric microparticles are injected into a well and when the heat and/or pH of the well cause degradation of the labile crosslinker and when the microparticle expands, the tertiary crosslinker crosslinks the polymer to form a stable gel, thus diverting water to lower permeability regions and improving oil recovery.