THREE-DIMENSIONAL MODELING APPARATUS, OBJECT, AND METHOD OF MANUFACTURING AN OBJECT

    公开(公告)号:US20180290379A1

    公开(公告)日:2018-10-11

    申请号:US16007012

    申请日:2018-06-13

    申请人: Sony Corporation

    摘要: Provided is a three-dimensional modeling apparatus including a stage, a constraining body, a supply nozzle, an irradiation unit, and a movement mechanism. The constraining body includes a surface including a linear region along a first direction, and is opposed to the stage so that the linear region is the closest to the stage. The supply nozzle supplies a material curable by energy of an energy ray into a slit region between the stage and the linear region. The irradiation unit irradiates the supplied material with the energy ray through the constraining body. The movement mechanism moves the stage relative to the constraining body along a second direction for forming a cured layer of the material for one layer, and moves the constraining body and the stage relative to each other along a stacking direction for stacking the cured layers.

    Device and Method for Applying Flowable Material to a Substratum That Can Be Rotated About an Axis of Rotation

    公开(公告)号:US20180111322A1

    公开(公告)日:2018-04-26

    申请号:US15573355

    申请日:2016-05-10

    发明人: Hans Mathea

    摘要: The invention relates to a device for applying flowable material to a substratum (3), which can be rotated about an axis of rotation (4), in accordance with specified image data, which are stored as pixels or as vectors of a certain Cartesian coordinate grid in a first memory (18), has at least one printing head (13A, 13B), which has a plurality of nozzles arranged at a nozzle distance from each other for discharging material drops of the flowable material and is arranged at a vertical distance from the substratum, and a controller (8) for positioning the substratum (3) in relation to the at least one printing head (13A, 13B) and the discharge of the material drops. In a second memory (19), particular polar coordinate grid points (20A, 20B) of a certain polar coordinate grid are stored, which polar coordinate grid points are arranged on circular lines (R1, R2) having a predetermined circular-line distance from each other and are arranged on first rays (A1), which have a first angular distance from each other and are arranged in the direction of origin on further rays (A2) having an angular distance from each other that is greater than the first angular distance. A computer (15) is present, by means of which the particular polar coordinate grid points (20A, 20B) stored in the second memory (19) can be transformed into coordinates of the certain Cartesian coordinate system and the Cartesian grid points thus obtained are compared with the pixels of the image file.