Abstract:
A slag tap system for a pressurized gasifier system that includes a reaction vessel and a pressure vessel in surrounding relation to the reaction vessel. The slag tap system includes a slag tap portion through which slag is discharged from the reaction vessel, mounting means for mounting the slag tap portion in supported relation within the reaction vessel, water inlet means operatively connected to the slag tap portion for introducing water thereinto, water outlet means operatively connected to the slag tap portion for discharging water therefrom after the passage of the water through the slag tap portion, a slag tank mounted in supported relation within the pressure vessel below and in spaced relation to the slag tap portion and operative to receive the slag for quenching therewithin after the slag has been discharged from the slag tap portion, and discharge means operatively connected to the slag tank for effecting the discharge therefrom of the slag after the slag has undergone quenching within the slag tank.
Abstract:
An improved gasifier adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications.
Abstract:
The use of pressure regulating values and tanks on compressor outlets and expander inlets of cyclic solid with gas reaction plants is described, together with the use of separate changeable gas flow passages and connection places into the reaction chambers from separate compressor and expander.With thee pressure regulating values and tanks the net rate of work of a cyclic solid with gas reaction plant need not fluctuate and can be held steady.With these separate gas flow passages the flow of reactant gas into the solid reactant during compression will be different in place from the flow of reacted gas out of the solid reactant during expansion. These differences of gas flow place can be useful for securing complete reaction of the solid reactant and for preventing carryover of soaid materials into the expander.
Abstract:
Waste or refuse is fed to a first reaction chamber communicating with a second one through openings in the lower portion of a partition between the chambers and hot metal or the like is fed into at least one of the two chambers; gas is extracted from the second chamber and the pressure conditions are such that different liquid levels obtain in the two chambers causing reaction gas to bubble through the openings and the liquid in the second chamber. The principle product gases extracted are hydrogen, carbonoxide and inert gases. Lime is preferably added to the waste to be processed.
Abstract:
A pressurized coal gasification system having double wall containment vessels (2,10) is disclosed. The gasification vessel (2) is provided with a gas tight water seal (36) for connecting the lower end of the inner water-cooled vessel (4) with the bottom supported slag tank (32). The seal (36) prevents gas leakage between the vessel interior and the pressurized annular volume (24) formed between the inner and outer gasification chambers (4,6). A flow of clean, particulate-free product gas (60) is routed into the contiguous annular volume (24,26,28) formed between the inner water-cooled gas directing members (4,20,12) and the outer, pressure containing members (6,22,16) to prevent either leakage of raw product gas into the annular volume or dilution of the product gas (46) by leakage of the sealing gas (60) into the hot product gas flowstream.
Abstract:
A cyclic char gasifier process and apparatus are described wherein reactant gases are first compressed into the pores of a char fuel to react and then the reacted gases are expanded out of the char fuel pores. This cycle of compression and expansion is repeated with fresh reactant gases supplied for each compression and with reacted gases removed at each expansion. Air and steam are preferred reactant gases when the char fuel is to be gasified by oxidation. Reacted gases from such an oxidation gasifier plant are preferred reactant gases when the char fuel is to be partially gasified by devolatilization. Rapid reaction to a rich product gas can occur over the large surface area inside the char pores and the undesireable Neumann reversion reaction is suppressed by the strongly reducing conditions prevailing therein. The gases of devolatilization gasification can be used to enrichen the gases of oxidation gasification by using two cyclic char gasifier plants in a combination system. The char fuel can be placed into sealed pressure vessel containers or can be gasified in place within an underground coal formation. These cyclic char gasifier plants and systems can produce a net work output, one or more fuel gases, a devolatilized char, and a partially oxidized coke as principal products and the proportions of these products can be adjusted over a wide range to match market needs.
Abstract:
A coal gasification reactor is disclosed which includes a gasification chamber surrounded by a pressure shell, a tubular quench section above the gasification chamber and a superposed waste heat boiler. Heat expansive members are provided in the form of bellow type expansion members between the waste heat boiler and the quench section as well as between the quench section and the gasification chamber to absorb or compensate for relative thermal expansion differences due to the temperature ranges involved in gasification.
Abstract:
A method for the conversion of organic waste and/or biological waste into combustible products includes: feeding a first flow having organic waste and/or biological waste: performing a pyrolysis of the first flow to obtain one or more liquid pyrolysis products, one or more gaseous pyrolysis products, and one or more solid pyrolysis products; mixing the one or more solid pyrolysis products with a first aqueous flow, and subjecting the mixture to oxidation to obtain oxidation products; taking a first gaseous flow from the oxidation products; subjecting the one or more gaseous pyrolysis products to reforming, thereby obtaining one or more reforming products, taking a second gaseous flow from the reforming products, and subjecting the first gaseous flow and the second gaseous flow to catalytic hydrogenation, to obtain at least one first combustible.
Abstract:
Methods and systems for processing construction and demolition (C&D) materials to produce a product gas stream and/or electricity are disclosed herein. In some embodiments, the method comprises pre-processing C&D materials to produce a C&D feed, and processing the C&D feed to produce syngas. The C&D feed can comprise untreated wood, treated wood, paper and cardboard, yard waste, plastic, rubber, and/or foam. Processing the C&D feed can comprise gasifying the C&D feed, steam, and oxygen in a gasifier at a temperature of no more than 950° C. and/or a pressure of no more than 200 psi to produce syngas.
Abstract:
A gasifier for organic solid waste by injection into molten iron and slag bath includes a gasification furnace, a liquid level adjusting furnace and a slag discharge and heat exchange shaft furnace. The liquid level adjusting furnace, in communication with the bottom of the gasification furnace, contains 1200-1700° C. molten iron-based alloy liquid, which is covered with molten liquid slag layer. When gas pressure above or liquid volume in the liquid level adjusting furnace increases, liquid level of the molten liquid in the gasification furnace rises simultaneously. A particle material injection lance is immersed, through which organic particles to be gasified are blown into molten bath, and oxygen gas or oxygen-enriched air as gasifying agent is blown into the melt at the same time. Organic substance is gasified into CO-rich and H2-rich syngas, and most of inorganic substance enters molten slag and is discharged termly.