Abstract:
An echo canceller used in a data transmission modem for cancelling in the baseband signal of the receive path an echo signal .epsilon.(t) produced by the data signal from the transmit path. The echo canceller comprises a difference circuit for forming the difference between the signal from the receive path s(t)+.epsilon.(t) and a synthetic echo copy signal .epsilon.(t). The echo copy signal is formed by at least one transversal filter which operates at a sampling frequency equal to the frequency of the data and whose coefficients are adjusted to minimize the mean-square value of an error signal. This error signal e(n) at an actual sampling instant n of the filter is determined by forming the difference between the value of the output signal of the difference circuit at the instant n and the value of this signal at the preceding sampling instant (n-1), which has been multiplied by the ratio between the value of the data recovered at the instant n and the value of the data recovered at the instant (n-1). Also provided is a circuit for providing an error signal for controlling the filter coefficients as a function of the sign of the difference circuit out signals for the actual and previous sampling instants.
Abstract:
A communication device and an echo cancellation method are provided. A digital echo canceller is coupled to a transmitting circuit and a receiving circuit to generate an echo energy indicator according to a digital output signal and a digital input signal. A transceiving front-end circuit receives the analog output signal and generates a hybrid interface signal. A hybrid fine-tune circuit generates a first and a second capacitance calibration signals according to the echo energy indicator. An analog echo cancellation circuit receives the first and second capacitance calibration signals, and includes a first and a second variable capacitors controlled by the first capacitance calibration signal and a third and a fourth variable capacitors controlled by the second capacitance calibration signal. The analog echo cancellation circuit receives the analog output signal and the hybrid interface signal, and generates the analog input signal according to the first and second capacitance calibration signals.
Abstract:
Facilitating echo cancellation within communication networks is contemplated, such as but not necessarily limited to facilitating echo cancellation within full-duplex (FDX) communication networks. The echo cancellation may optionally be performed with an echo canceller included as part of or otherwise associated with an FDX node used to facilitate interfacing signaling between a digital domain and an analog domain of a FDX or other communication network.
Abstract:
A receiver (e.g., for a 10 G fiber communications link) includes an interleaved ADC coupled to a multi-channel equalizer that can provide different equalization for different ADC channels within the interleaved ADC. That is, the multi-channel equalizer can compensate for channel-dependent impairments. In one approach, the multi-channel equalizer is a feedforward equalizer (FFE) coupled to a Viterbi decorder, for example, a sliding block Viterbi decoder (SBVD); and the FFE and/or the channel estimator for the Viterbi decoder are adapted using the LMS algorithm.
Abstract:
Systems and techniques relating to channel degradation detection for communication systems are described. A described system includes an interface to transmit signals and receive signals via a channel that includes a cable; an echo canceller coupled with the interface, the echo canceller to perform echo cancellation based on echo tap values to remove portions of the transmitted signals that appear as echoes within the received signals; an equalizer coupled with the interface, the equalizer to perform signal equalization based on equalizer tap values, the equalizer tap values being determined based on at least a portion of the received signals to adjust an impulse response of the channel and reduce inter-symbol interference within the received signals; and circuitry configured to determine a return loss channel quality indicator of the channel based on the echo tap values, determine an insertion loss channel quality indicator of the channel based on the equalizer tap values, or both.
Abstract:
A variable update step size is determined in proportion to a magnitude ratio or magnitude difference between a first residual signal and a second residual signal. The first residual signal is obtained by using adaptive filter coefficient sequence, where the adaptive filter coefficient sequence has been obtained in previous operations of the adaptive equalizer. The second residual signal is obtained by using a prior update adaptive filter coefficient sequence, where the prior update adaptive filter coefficient sequence is obtained by performing a coefficient update with an arbitrary prior update step size on the adaptive filter coefficient sequence having been obtained in previous operations of the adaptive equalizer.
Abstract:
An echo canceller for an IP network includes an adaptive filter that models the echo path and generates an estimate of the echo signal from a receiving input signal. The echo canceller subtracts the estimate of the echo signal from a sending input signal to generate a sending output signal with reduced echo. Variation in the echo delay is detected. A delay circuit compensates for the changes in the echo delay to provide proper time-alignment between the estimate of the echo signal and the sending input signal so that the echo signal will be more effectively cancelled.
Abstract:
A system and method for identifying minor echoes present in an input signal in the situation where a set of major echoes has already been identified from the input signal. The method includes: computing a spectrum F corresponding to a sum of the major echoes; computing a weighted power spectrum SM of the spectrum F; subtracting the weighted power spectrum SM from a weighted power spectrum PIN of the input signal to obtain a difference spectrum; performing a stabilized division of the difference spectrum by a conjugate of the spectrum F to obtain an intermediate spectrum; computing an inverse transform of the intermediate spectrum to obtain a time-domain signal; and estimating parameters one or more of the minor echoes from the time-domain signal. The echo parameters are usable to remove at least a portion of the one or more estimated minor echoes from the input signal.
Abstract:
A system and method for identifying minor echoes present in an input signal in the situation where a set of major echoes has already been identified from the input signal. The method includes: computing a spectrum F corresponding to a sum of the major echoes; computing a weighted power spectrum SM of the spectrum F; subtracting the weighted power spectrum SM from a weighted power spectrum PIN of the input signal to obtain a difference spectrum; performing a stabilized division of the difference spectrum by a conjugate of the spectrum F to obtain an intermediate spectrum; computing an inverse transform of the intermediate spectrum to obtain a time-domain signal; and estimating parameters one or more of the minor echoes from the time-domain signal. The echo parameters are usable to remove at least a portion of the one or more estimated minor echoes from the input signal.
Abstract:
A method of noise mitigation in a multi-carrier communication system includes receiving a signal from a decision device, determining whether synchronization symbol update is enabled, updating at least one of frequency-domain equalizer (FEQ) coefficients or digital echo canceller (DEC) coefficients in synchronization symbol periods if the synchronization symbol update is enabled, determining whether data symbol update is performed if the synchronization symbol update is not enabled, determining whether a flag associated with the signal is set if the data symbol update is not performed, and updating at least one of FEQ or DEC coefficients associated with the signal in synchronization symbol periods if the flag is set.