Abstract:
A base station for controlling transmission power during the establishment of a communication channel utilizes the reception of a short code during initial power ramp-up. The short code is a sequence for detection by the base station which has a much shorter period than a conventional access code. The ramp-up starts from a power level that is lower than the required power level for detection by the base station. The power of the short code is quickly increased until the signal is detected by the base station. Once the base station detects the short code, it transmits an indication that the short code has been detected.
Abstract:
A code-division-multiple-access (CDMA) system employing spread-spectrum modulation. The CDMA system has a base station (BS), and a plurality of subscriber units. The signals transmitted between the base station and subscriber unit use spread-spectrum modulation. The improvement apparatus for adaptive forward power control (APC) from a base station (BS) to a subscriber unit (SU), includes sending from the base station, using spread-spectrum modulation, a BS-spreading code on a forward channel. The subscriber unit despreads the BS-spreading code on the forward channel as a despread signal, determines a first power level P.sub.d which includes power of the despread signal plus noise and a second power level P.sub.N, which includes despread-noise power. The subscriber unit determines a first error signal e.sub.1, from the first power level P.sub.d, the second power level P.sub.N, and a required signal-to-noise ratio SNR.sub.REQ for service type, and a second error signal e.sub.2, from a measure of total received power P.sub.r and an automatic gain control (AGC) set point P.sub.o. The subscriber unit forms a combined error signal from the first error signal e.sub.1, the second error signal e.sub.2, a first weight a.sub.1 and a second weight a.sub.2, and hard limits the combined error signal to form a single APC bit. The APC bit is transmitted to the base station. In response to the APC bit, the base station adjusts transmitter power to the subscriber unit.
Abstract:
A mobile terminal communicating with a plurality of cells, including a serving cell, has a control unit. The control unit performs at least one control of (a) a first control for causing a path search unit to detect a path for the serving cell more preferentially than paths for cells other than the serving cell, (b) a second control for causing a finger assignment unit to assign a path detected for the serving cell preferentially over paths detected for cells other than the serving cell to a plurality of fingers, and (c) a third control for causing a reference frequency adjustment unit to adjust reference frequency so that the reference frequency is approximated to reference frequency of a base station controlling the serving cell.
Abstract:
A subscriber unit for use in a multiple access spread-spectrum communication system includes a spread spectrum radio interface, responsive to a rate function signal from a base station, and first and second despreaders. The base station assigns the rate function spread-spectrum message channels and the first despreader recovers and modifies an information signal one of the spread spectrum message channels. The information channel mode is then modified for processing by the second despreader, with the second despreader supporting a different information signal rate. The subscriber unit has a capability of communicating with a dynamically changing a transmission rate of an information signal which includes multiple spread spectrum message channels. The system includes a closed loop power control system for maintaining a minimum system transmit power level for a radio carrier station and the subscriber units, and system capacity management for maintaining a maximum number of active subscriber units for improved system performance.
Abstract:
A base station for controlling transmission power during the establishment of a communication channel utilizes the reception of a short code during initial power ramp-up. The short code is a sequence for detection by the base station which has a much shorter period than a conventional access code. The ramp-up starts from a power level that is lower than the required power level for detection by the base station. The power of the short code is quickly increased until the signal is detected by the base station. Once the base station detects the short code, it transmits an indication that the short code has been detected.
Abstract:
Cell timing is detected by first trying to detect a target handover cell through detecting a primary synchronization channel (P-SCH) followed by a common pilot channel (CPICH). If that fails, N number of retrials is performed using a full-window search on the CPICH. The full-window CPICH search is performed blindly, without any slot timing information from the P-SCH. Performance is improved while maintaining the benefits of faster acquisition methods in good channel conditions. The full-window search is more time consuming, but takes advantage of the stronger CPICH transmission. In good channel conditions, a mobile device can proceed quickly with the normal method of timing acquisition. With failure, the mobile device can switch to the longer search which has a higher probability of successfully completing the hard handover procedure. The overall effect is a higher success rate of hard handovers without a uniform increase of time spent in cell timing acquisition.
Abstract:
In general, the invention facilitates searching for energy peaks in spread spectrum wireless communication systems with greater precision. More particularly, various embodiments of the invention may involve reporting not only an energy peak and its associated offset, but also the energy levels corresponding to one or more offsets occurring before and after the offset at which the energy peak occurs. Interpolation or extrapolation techniques may be used to predict the actual location of an energy peak based on the apparent location of the peak and the energy levels observed at surrounding offsets.
Abstract:
A method implemented in a communication device for tracking a spread spectrum signal having an associated code at a receiver is claimed. Components of the spread spectrum signal are despread using locally generated versions of the associated code, each component having a different code phase. A tracking error is determined based on a quadratic function of the components and a weighting factor relating the signal to the tracking error. The weighting factor is a function of a time shift. A minimum in the tracking error is determined by adjusting the time shift.
Abstract:
Method and apparatus for processing satellite signals in an SPS receiver is described. In one example, the satellite signals are correlated against pseudorandom reference codes to produce correlation results. A determination is made whether the SPS receiver is in a motion condition or a stationary condition. The correlation results are coherently integrated in accordance with a coherent integration period. The coherent integration period is a value that depends upon the motion condition of the SPS receiver.
Abstract:
A code division multiple access subscriber unit comprises an antenna configured to output a radio frequency signal, the radio frequency signal having a quadrature (Q) channel and an in-phase (I) channel. A circuit coupled to the antenna, the circuit being configured to generate power control bits which are carried by one of the I and Q channels and not the other one of the I and Q channels, the power control bits are spread coded and are adapted to control an output power of a base station. The radio frequency signal is a first radio frequency signal, the circuit is further configured to generate the power control bits based on a power level of a second radio frequency signal output by a base station and an interference level associated with the second radio frequency signal.