Abstract:
The present invention discloses a Fluid End and its manufacturing method. The conventional fluid end manufacturing methods involve machining of all surfaces.This demands more input stock for manufacturing process and a lot of material wastage during machining process. In the conventional processes involving open die forging followed by machining result into only about 34% utilization of material. In the present invention, fluid end component geometry is optimized. Assembly surfaces are machined whereas other or non-assembly surfaces are as-forged condition. The method of invention also results in significant reduction in machining time and chip removal. The present invention also discloses a process of manufacturing using a combination of open die and closed die forging, and machining. It involves the steps of cogging an ingot to form billet for closed die forging using open die forging, forging the billet in closed die using forging equipment, semi-finish/rough/partial machining, heat treatment, drilling and finish machining the component. Most of the non-assembly areas of the fluid end are left in as-forged condition.
Abstract:
A crank circular slider mechanism includes a crankshaft having at least one crank pin; at least one circular slider with an eccentric hole which fits over the crank pin; at least one reciprocating element with a circular slider-receiving hole, which receives the circular slider in a rotatable manner; and at least one dynamic balance rotary block with an eccentric hole that fits over the crank pin. The dynamic balance rotary block and the adjacent circular slider are fixed together. By means of proper selection of a mounting place and a mass of the dynamic balance rotary block, the mechanism can convert reciprocating inertia of the reciprocating element into rotation inertia so as to obtain a balancing effect. An internal combustion engine and a compressor may be equipped with the crank circular slider mechanism.
Abstract:
An air compressor assembly for filling self-contained breathing apparatus air containers has at least one condensate separator. The condensate separator includes a liquid-retaining vessel a liquid-level sensor. A drain valve is in fluid communication with the condensate separator. The drain valve is configured to open and drain retained liquid from the liquid-retaining vessel when the liquid-level sensor detects that a level of the retained liquid reaches a drain valve activation triggering level.
Abstract:
A piston cylinder arrangement for an air compressor including a cylinder, a connecting rod having a wrist pin receiving end, a wrist pin provided in the wrist pin receiving end of the connecting rod, and a piston provided on the connecting rod via the wrist pin and positioned within the cylinder. At least one passageway may be defined in the wrist pin to permit air to flow into the wrist pin from the cylinder.
Abstract:
A pump system has a rotatory shaft and a rotatory drive arrangement coupled to the rotatory shaft for applying rotatory energy thereto. First through fourth pump arrangements are coupled to the rotatory shaft, each pump arrangement pumping a pulse of air during each rotation of the rotatory shaft, the first, second, third, and fourth pump arrangements pumping a corresponding pulse of air sequentially during each rotation of the rotatory shaft. The rotatory shaft has a first and second ends, and a central region therebetween where an electric motor is coaxially arranged. The first and third pump arrangements are coupled to the first end of the rotatory shaft, and the second and fourth pump arrangements are coupled to the second end of the rotatory shaft. Angularly displaced eccentric couplers couple the pump arrangements to the respective ends of the rotatory shaft.
Abstract:
A pump system has a rotatory shaft and a rotatory drive arrangement coupled to the rotatory shaft for applying rotatory energy thereto. First through fourth pump arrangements are coupled to the rotatory shaft, each pump arrangement pumping a pulse of air during each rotation of the rotatory shaft, the first, second, third, and fourth pump arrangements pumping a corresponding pulse of air sequentially during each rotation of the rotatory shaft. The rotatory shaft has a first and second ends, and a central region therebetween where an electric motor is coaxially arranged. The first and third pump arrangements are coupled to the first end of the rotatory shaft, and the second and fourth pump arrangements are coupled to the second end of the rotatory shaft. Angularly displaced eccentric couplers couple the pump arrangements to the respective ends of the rotatory shaft.
Abstract:
A reciprocating compressor or pump features a manifold arranged not only to define a hollow interior for receiving fluid discharged from a plurality of cylinders but also to define a base or frame on which the cylinders are carried. Unique valves formed in part by flexible material reduces the likelihood of fatigue and increases efficiency by retaining less heat relative to conventional reed valves. A compressor or pump mounted at an end of a handle extending parallel to a motor housing likewise extending from the compressor or pump provides an easy to carry portable assembly. A fan mounted between a motor and a compressor pulls air through the compressor inlet to both cool the motor and feed the compressor. A portable tool system powers both pneumatic and electric tools. Connecting rod structures for radial compressors or pumps provide improved strength and easier assembly.
Abstract:
A fluid rotary machine with a decreased footprint and a reduction in the number of parts. The fluid rotary machine has four heads wherein double-headed pistons are disposed inside cylinders in a crisscross arrangement. The rotational balance between rotational parts including the double-headed pistons is achieved only by first and second balance weights which are inserted and incorporated into both ends of a crank shaft coupled eccentrically to a shaft. The shaft is rotated for the double-headed pistons to linearly reciprocate in the cylinders. The fluid rotary machine has rotary valves for switching between the suction and discharge operations of the fluid for each cylinder chamber. The rotary valves are incorporated into a case to be coaxial and integrally rotatable with the shaft.
Abstract:
An air discharging apparatus to discharge pressurized air at a predetermined timing is disclosed. The disclosed air discharging apparatus includes an air pump including a cylinder and a piston configured to reciprocate in the cylinder; an opening and closing member provided at an air discharge opening of the air pump and configured to open and close the air discharge opening; and a switching mechanism providing mechanical coupling between the piston and the opening and closing member. The mechanical coupling keeps the opening and closing member in a closed state until the piston reaches a predetermined position in a compression stroke and switches the opening and closing member to an opened state when the piston reaches the predetermined position.
Abstract:
An air discharging apparatus to discharge pressurized air at a predetermined timing is disclosed. The disclosed air discharging apparatus includes an air pump including a cylinder and a piston configured to reciprocate in the cylinder; an opening and closing member provided at an air discharge opening of the air pump and configured to open and close the air discharge opening; and a switching mechanism providing mechanical coupling between the piston and the opening and closing member. The mechanical coupling keeps the opening and closing member in a closed state until the piston reaches a predetermined position in a compression stroke and switches the opening and closing member to an opened state when the piston reaches the predetermined position.