Abstract:
The present invention provides improved variants of T7 RNA polymerase by introducing novel mutations which lead to improved thermostability of the enzyme. According to the invention, amino acid substitutions at the positions Val426, Ser633, Val650, Thr654, Ala702, Val795, and combinations thereof are advantageous.
Abstract:
The present invention provides a method for monitoring of profile changes of components in a dynamic system such as a cell-free in vitro protein synthesis system by using liquid chromatography (LC) combined with mass spectrometry (MS). In an additional aspect, this invention provides a method for enhancing the yield and/or reproducibility in a cell-free protein synthesis system by modulating the level and/or activity of a protein component that has regulatory effects on the system.
Abstract:
The invention relates to modified T7-related RNA polymerases and methods of use thereof. In some embodiments, the invention relates to modified T7-related RNA polymerases that transcribe RNA with reduced abortive cycling and increased efficiency compared with native T7-related RNA polymerases.
Abstract:
The present invention is directed to engineered enzymatically active bacteriophages that are both capable of killing the bacteria by lysis and dispersing the bacterial biofilm because they have been also engineered to express biofilm-degrading enzymes, particularly dispersin B (DspB), an enzyme that hydrolyzes β-1,6-N-acetyl-D-glucosamine, a crucial adhesion molecule needed for biofilm formation and integrity in Staphylococcus and E. coli, including E. coli K-12, as well as clinical isolates.
Abstract:
The present invention provides a method for monitoring of profile changes of components in a dynamic system such as a cell-free in vitro protein synthesis system by using liquid chromatography (LC) combined with mass spectrometry (MS). In an additional aspect, this invention provides a method for enhancing the yield and/or reproducibility in a cell-free protein synthesis system by modulating the level and/or activity of a protein component that has regulatory effects on the system.
Abstract:
The present invention provides improved variants of T7 RNA polymerase by introducing novel mutations which lead to improved thermostability of the enzyme. According to the invention, amino acid substitutions at the positions Val426, Ser633, Val650, Thr654, Ala702, Val795, and combinations thereof are advantageous.
Abstract:
The present invention relates to nucleic acid inhibitors, compositions and method for enhancing synthesis of nucleic acid molecules. In a preferred aspect, the invention relates to inhibition or control of nucleic acid synthesis, sequencing or amplification. Specifically, the present invention discloses nucleic acids having affinity for polypeptides with polymerase activity for use in such synthesis, amplification or sequencing reactions. The nucleic acid inhibitors are capable of inhibiting nonspecific nucleic acid synthesis under certain conditions (e.g., at ambient temperatures). Thus, in a preferred aspect, the invention relates to “hot start” synthesis of nucleic acid molecules. Accordingly, the invention prevents, reduces or substantially reduces nonspecific nucleic acid synthesis. The invention also relates to kits for synthesizing, amplifying, reverse transcribing or sequencing nucleic acid molecules comprising one or more of the nucleic acid inhibitors or compositions of the invention. The invention also relates to using the inhibitors of the invention to prevent viral replication or treat viral infections in a subject. Thus, the invention relates to therapeutic methods and pharmaceutical compositions using the inhibitors of the invention. The invention thus may be used for in vivo and in vitro inhibition of nucleic acid synthesis and/or inhibition of polymerase activity.
Abstract:
The present invention relates to nucleic acid inhibitors, compositions and method for enhancing synthesis of nucleic acid molecules. In a preferred aspect, the invention relates to inhibition or control of nucleic acid synthesis, sequencing or amplification. Specifically, the present invention discloses nucleic acids having affinity for polypeptides with polymerase activity for use in such synthesis, amplification or sequencing reactions. The nucleic acid inhibitors are capable of inhibiting nonspecific nucleic acid synthesis under certain conditions (e.g., at ambient temperatures). Thus, in a preferred aspect, the invention relates to “hot start” synthesis of nucleic acid molecules. Accordingly, the invention prevents, reduces or substantially reduces nonspecific nucleic acid synthesis. The invention also relates to kits for synthesizing, amplifying, reverse transcribing or sequencing nucleic acid molecules comprising one or more of the nucleic acid inhibitors or compositions of the invention. The invention also relates to using the inhibitors of the invention to prevent viral replication or treat viral infections in a subject. Thus, the invention relates to therapeutic methods and pharmaceutical compositions using the inhibitors of the invention. The invention thus may be used for in vivo and in vitro inhibition of nucleic acid synthesis and/or inhibition of polymerase activity.
Abstract:
The invention relates to Mycobacterium tuberculosis RNA polymerase algU sigma subunit protein, DNA encoding, and methods of detecting inhibitors of the RNA polymerase.
Abstract:
Recombinant proteins comprising a non-canonical amino acid with high yield and high fidelity are made by expressing the protein in an engineered Vibrio natriegens strain containing an orthogonal translation system comprising an orthogonal aminoacyl tRNA synthetase that charges the non-canonical amino acid onto the orthogonal cognate tRNA.