摘要:
A method for fabricating a capacitor. A first metal layer is formed on a provided substrate. A dielectric film is formed on the first metal layer. The dielectric film can be a mono-layer structure or a multi-layer structure comprising various dielectric materials. A rapid thermal process (RTP), such as a rapid thermal annealing, or a plasma treatment is performed to enhance the quality of the dielectric film. A photolithography and etching process is performed to remove a part of the dielectric film and the first metal layer to expose a part of the inter-layer dielectric layer. The remaining first conductive layer is used as a lower electrode. A conventional interconnect process is performed on the exposed inter-layer dielectric layer and on the dielectric film. For example, a glue layer is formed on the exposed inter-layer dielectric layer and on the dielectric film. A second metal layer is formed on the glue layer. A photolithography and etching process is performed to remove a part of the second conductive layer. The second metal layer remaining on the inter-layer dielectric layer is used as a wiring line for interconnection. The glue layer remaining on the dielectric film is used as an upper electrode.
摘要:
A method for fabricating a semiconductor device, such as a MOS (metal-oxide semiconductor) transistor, with self-aligned silicide is provided. This method can prevent junction leakage between the silicide and the substrate so as to allow the resultant semiconductor device to have reliable performance. The method includes the steps of preparing a semiconductor substrate; forming at least one transistor element over the substrate, the transistor element including a pair of source/drain regions, a gate, a dielectric layer over the gate, and a spacer on the sidewall of the gate; and performing an ion-bombardment process so as to transport one part of the dielectric layer that is adjacent to the top of the spacer to beside the bottom of the spacer. Through this method, the resultant semiconductor device is reliable in operation since the drawback of the occurrence of leakage current or short-circuit that could be otherwise resulted between the self-aligned silicide and the substrate owing to the short-channel effect can be eliminated. Moreover, the resultant semiconductor device has increased anti-static capability that can protect the semiconductor device against electro-static damage.
摘要:
A new method of forming a metal diffusion barrier layer is described. Semiconductor device structures are formed in and on a semiconductor substrate. At least one dielectric layer covers the semiconductor structures and at least one contact hole has been opened through the dielectric layer(s) to the semiconductor substrate. A metal diffusion barrier layer is now formed using the following steps: In the first step, a thin layer of titanium is deposited conformally over the surface of the dielectric layer(s) and within the contact opening(s) and annealed in a nitrogen atmosphere at a temperature of between about 580.degree. to 630.degree. C. for between about 20 to 120 seconds. The second step is to form stable and adhesive titanium compounds on the pre-metal dielectric layer as well as to form a low resistance silicide on the contact silicon by annealing at between about 800.degree. to 900.degree. C. for between about 5 to 60 seconds. The final step is to release the system stress by tempering the layer at a temperature of between about 600.degree. to 750.degree. C. This completes the barrier layer which has good adhesion to the dielectric layer(s) and, therefore, promotes improved pad bonding yield.
摘要:
A new method of fabricating a polycide gate is described. A gate polysilicon layer is provided a gate oxide layer on the surface of a substrate. A thin conducting diffusion barrier is deposited overlying the gate polysilicon layer. A of tungsten silicide is deposited overlying the thin diffusion barrier layer wherein a reaction gas in the deposition contains fluorine atoms and wherein fluorine atoms are incorporated into the tungsten layer. The gate polysilicon, thin conducting barrier, and tungsten silicide layers are patterned form the polycide gate structures. The wafer is annealed complete formation of the polycide gate structures wherein number of fluorine atoms from the tungsten silicide layer into the gate polysilicon layer are minimized by presence of the thin conducting diffusion barrier layer wherein because the diffusion of the fluorine atoms is the thickness of the gate oxide layer does not This prevents the device from degradation such as voltage shift and saturation current descrease.
摘要:
A new method of metallization using a new design of metal contact shape, contact/via profile, and metal lines having considerably reduced current density and improved electromigration of metal lines is achieved. Metal contacts are formed in a rectangular shape instead of a square shape with the wider side perpendicular to the current direction. Contact openings are made having concavo-concave profiles which can provide a wider conducting cross-sectional area than can conventional openings with a vertical profile near the contact bottom. Gaps are formed within wide and high current metal lines so that current density can be effectively lowered by utilizing the whole metal line uniformly.
摘要:
A new method of metallization using a new design of metal contact shape, contact/via profile, and metal lines having considerably reduced current density and improved electromigration of metal lines is achieved. Metal contacts are formed in a rectangular shape instead of a square shape with the wider side perpendicular to the current direction. Contact openings are made having concavo-concave profiles which can provide a wider conducting cross-sectional area than can conventional openings with a vertical profile near the contact bottom. Gaps are formed within wide and high current metal lines so that current density can be effectively lowered by utilizing the whole metal line uniformly.
摘要:
A method for eliminating the peeling of polycide at the edge of a wafer used to fabricate semi-conductors and integrated circuits. A global rough surface is formed on the wafer. The rough surface on the substrate wafer releases most of the thermal stress between the silicide and polysilicon layers which are found in conventional devices. A "peel free" surface results and the particle problem is lessened.
摘要:
A new method of forming stress releasing voids within the intermetal dielectric of an integrated circuit is achieved. A first layer of patterned metallization is provided over semiconductor device structures in and on a semiconductor substrate. A silicon oxide layer is deposited overlying the first patterned metal layer. A silicon nitride layer is deposited over the silicon oxide layer. A metal layer is deposited over the silicon nitride layer and etched to form silicon nodules on the surface of the silicon nitride layer. The silicon nitride layer is etched away to the underlying silicon oxide layer wherein the silicon nitride under the silicon nodules remains in the form of pillars. The surface of the silicon oxide layer is coated with a spin-on-glass material which is baked and cured. The silicon nodules and silicon nitride pillars are removed, leaving voids within the spin-on-glass layer. A second layer of silicon oxide is deposited overlying the spin-on-glass layer to complete formation of the porous intermetal dielectric of the said integrated circuit.
摘要:
A technique for making a MOST capacitor for use in a DRAM cell utilizes silicon nodules after metal etching. The silicon nodules are used as a mask to selectively form deep grooves in a polysilicon electrode of the capacitor.
摘要:
A MOST capacitor for use in a DRAM cell by using non-uniform silicide formations on polysilicon to define a plurality of polysilicon pillars. Unreacted polysilicon islands are used as a mask to selectively form the pillars in the polysilicon electrode layer.