Abstract:
Wireless communications systems and methods related to synchronization signal (SS) transmission coordination among base stations (BSs) and restricted SS measurements at user equipments (UEs) are provided. A first BS transmits a first SS burst in a first SS transmission period of a plurality of SS transmission periods. The first SS transmission period is designated to the first BS. A second SS transmission period of the plurality of SS transmission periods is designated to a second BS. The first SS transmission period and the second SS transmission period are different. The first BS receives, from a UE, a first signal in synchronization with the first SS burst. The first signal includes a SS measurement of the first SS burst.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for beam recovery and radio link failure (RLF) in communications systems using beamforming and operating according to new radio (NR) technologies. An exemplary method that may be performed by a UE includes communicating using beamforming with a base station (BS) via a transmit beam and a receive beam of an active beam pair and obtaining an indication of one or more alternative beams for the UE to use to send a beam recovery message to the BS in the event the transmit beam and the receive beam of the active beam pair become misaligned.
Abstract:
Networks that support 5G communication may support different numerologies across and even within a symbol, slot, or subframe. Sequences, such as reference signals or data scrambled with a scrambling code, may be transmitted on resources with such mixed numerologies. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a user equipment. The UE may be configured to receive an indication of assigned resources for communicating with a base station. The UE may also be configured to determine a numerology associated with the assigned resources, and to determine one or more indices based on the numerology. The UE may also generate a sequence based on the one or more indices and communicate with the base station based on the sequence.
Abstract:
Certain aspects of the present disclosure provide techniques for using beam sets for mobility management. A BS serving the UE may transmit, to the UE, information regarding one or more beam sets, wherein each of the beam sets comprise one or more reference beams used to transmit a reference signal. The BS may transmit, to the UE, one or more mobility parameters, wherein the mobility parameters are associated with the reference beams and one or more mobility event triggers. The BS may receive, from the UE, an indication of a detected mobility event, the mobility event is detected based, at least in part, on the mobility parameters. The BS may take one or more actions based, at least in part, on the indication. A UE may perform corresponding steps as described herein.
Abstract:
Aspects of the present disclosure relate to wireless communications and, more particularly, to semi-persistent configuration of reference signals (RSs), such as measurement reference signals (MRSs) for beam refinement. An example method generally includes transmitting, to a user equipment (UE), a reference symbol (RS) configuration, wherein transmitting the RS configuration is independent of activating RS training for the UE, transmitting, to the UE, a message indicating an activation of RS training subsequent to transmitting the RS configuration, transmitting RSs to the UE periodically based on the RS configuration, and receiving, from the UE, measurement reports based on the transmitted RS.
Abstract:
Aspects of the present disclosure relate to wireless communications and, more particularly, to beam refinement during a RACH procedure. A NB may receive a message via a first beam from a UE as part of a RACH procedure and may transmit at least one signal for beam refinement during the RACH procedure. A UE may transmit, to a NB, a message via a first beam as part of a RACH procedure and may receive, from the NB, at least one signal for beam refinement during the RACH procedure. Any directional signal beam may be used for beam refinement as described herein.
Abstract:
A method of initiating handover preparation of a subset of a plurality of cells in a wireless communication network for a mobile device includes determining a first set of candidate cells of the plurality of cells in the wireless communication network. In one aspect, the method includes obtaining one or more of backhaul performance data, historical mobility data, or historical handover data and adding at least one candidate cell of the first set of candidate cells to the subset of cells based on the one or more data. The method then includes generating and sending a handover request message from the serving cell to each of the cells included in the subset of cells to initiate handover preparation of the mobile device from the serving cell.
Abstract:
The present disclosure presents a method and an apparatus for off-loading user equipment (UE) from a small cell base station. For example, the method may include identifying a first and a second set of UEs from a plurality of UEs at a small cell base station, prioritizing the first and the second set of UEs, and off-loading one or more UEs from the first or the second set of UEs based at least on the prioritization. As such, off-loading of UEs from a small cell base station may be achieved.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for radio link monitoring with BWPs and interference measurements using communications systems operating according to new radio (NR) technologies. Certain aspects provide a method for wireless communication. The method generally includes determining one or more bandwidth parts (BWPs) for radio link monitoring (RLM) based on one or more signals; and configuring a user equipment (UE) to monitor the one or more signals on the one or more BWPs within a maximum channel bandwidth.
Abstract:
Networks that support 5G communication may support different numerologies across and even within a symbol, slot, or subframe. Sequences, such as reference signals or data scrambled with a scrambling code, may be transmitted on resources with such mixed numerologies. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a user equipment. The UE may be configured to receive an indication of assigned resources for communicating with a base station. The UE may also be configured to determine a numerology associated with the assigned resources, and to determine one or more indices based on the numerology. The UE may also generate a sequence based on the one or more indices and communicate with the base station based on the sequence.