Abstract:
Methods and systems for wireless communication are provided. In one example, a method comprises: receiving, by a mobile device, a radio beam, the radio beam being a directional beam that propagates along an angle of departure with respect to an antenna that transmits the radio beam; identifying, by the mobile device, at least one of: the radio beam or a base station that operates the antenna; determining, by the mobile device, a position of the mobile device based on identifying at least one of the radio beam or the antenna of the base station; and outputting, by the mobile device, the position of the mobile device.
Abstract:
Aspects of the present disclosure provide techniques for variable spreading factor codes for non-orthogonal multiple access (NOMA). In an exemplary method, a base station assigns, from a first codebook of N short code sequences of length K, a subset of the short code sequences to a number of user equipments (UEs); receives a signal including uplink data or control signals from two or more of the UEs, wherein a first uplink data or control signal is sent using a first subsequence of one of the assigned short code sequences, and a second uplink data or control signal is sent using a second subsequence of one of the assigned short code sequences or using one of the assigned short code sequences; and decodes each uplink data or control signal in the signal based on the assigned short code sequences and subsequences of the assigned the short code sequences.
Abstract:
Techniques for performing peer discovery in a wireless network are described. A device may perform peer discovery to detect and identify other devices of interest. In an aspect, the device may perform peer discovery based on a hybrid mode that includes autonomous peer discovery and network-assisted peer discovery. In another aspect, the device may perform peer discovery based on a push mode and a pull mode. For the push mode, the device may occasionally transmit and/or receive a peer detection signal. For the pull mode, the device may transmit and/or receive a peer discovery request when triggered. In yet another aspect, the device may perform event-triggered peer discovery (e.g., for the pull mode). In yet another aspect, the device may perform peer discovery using both a downlink spectrum and an uplink spectrum. In yet another aspect, the device may transmit a peer detection signal in a manner to improve detection and/or increase payload.
Abstract:
Techniques for performing peer discovery to enable peer-to-peer (P2P) communication are disclosed. In an aspect, a proximity detection signal used for peer discovery may be generated based on one or more physical channels and/or signals used in a wireless network. In one design, a user equipment (UE) may generate a proximity detection signal occupying at least one resource block based on a SC-FDMA modulation technique. In another design, the UE may generate a proximity detection signal occupying at least one resource block based on an OFDMA modulation technique. The UE may generate SC-FDMA symbols or OFDMA symbols in different manners for different physical channels. In yet another design, the UE may generate a proximity detection signal including a primary synchronization signal and a secondary synchronization signal. For all designs, the UE may transmit the proximity detection signal to indicate its presence and to enable other UEs to detect the UE.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for implementing one or more antenna diversity schemes using communications systems operating according to 5G technologies. For example, techniques and apparatus may be provided for employing Alamouti encoding in a time domain for one or more portions of a plurality of modulated symbols associated with a first signal to be transmitted by a first antenna or a second signal to be transmitted by a second antenna to create a first plurality of encoded symbols or a second plurality of encoded symbols with tone-wise Alamouti in the frequency domain.
Abstract:
A method and apparatus for adapting uplink transmissions during wireless communications are described. The method and apparatus include transmitting, by a user equipment (UE) operating in a Ultra-Reliable Low-Latency Communications (URLLC) mode, a first transmission to a network entity in a first frequency region, the first frequency region corresponding to a reserved frequency division multiplexing (FDM) region of an uplink channel. The method and apparatus include receiving an downlink grant from the network entity in response to transmitting the first transmission, the downlink grant indicating at least a second frequency region for uplink transmissions different from the first frequency region. The method and apparatus include adapting the first frequency region to the second frequency region for transmitting one or both of a retransmission or a subsequent transmission based on the downlink grant.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE that acquires information regarding an interfering non-serving cell and uses the information to improve decoding of serving cell signals. The method includes receiving, from a serving evolved Node B (eNB), information that includes one or more transmission characteristics of at least one non-serving cell and performing at least one of interference cancellation, demodulation, or provides an improved channel quality indicator (CQI) based on the received information.
Abstract:
Certain aspects of the present disclosure generally relate to techniques for on-demand paging. In one aspect, a method is provided for receiving a paging message by a mobile device. The method generally includes acquiring network time, determining, based on the network time or an internal timer, that the mobile device is within a paging window wherein the mobile device can receive a paging message, and sending an indication message, in response to the determination. The mobile device may receive a response to the indication message, the response indicating whether or not there is a paging message for the mobile device.
Abstract:
Various aspects described herein relate to transmitting hybrid automatic repeat/request (HARQ) feedback. A HARQ communication can be received over a set of one or more links based on a first scheduling grant. One or more interference parameters related to receiving the HARQ communication can be determined as well as one or more predicted interference parameters for a next HARQ communication. HARQ feedback can be transmitted for the HARQ communication including the one or more interference parameters and the one or more predicted interference parameters.
Abstract:
According to example embodiments, a method for wireless communications by a user equipment (UE) is included. The method generally includes performing channel estimation at a plurality of frequency locations based on reference signals (RS) transmitted from at least one transmission point, computing at least one channel feedback metric for each frequency location, and transmitting the channel feedback metrics to the transmission point. According to certain aspects, a method for wireless communications by a base station (BS) is provided. The BS may receive channel feedback metrics from a UE, calculated at a plurality of frequency locations based on RSs transmitted from the BS. The BS may perform interpolation to determine values for channel feedback metrics for frequency locations between frequency locations of the received channel feedback metrics.