Abstract:
A method includes mapping, based on a first antenna mapping, a plurality of symbols to a plurality of antennas for transmitting a first data unit to a receiver, mapping, based on a first subcarrier mapping, the plurality of symbols to a plurality of subcarriers for transmitting the first data unit, and determining whether the receiver has successfully received the first data unit. The method also includes, in response to determining that the receiver has not successfully received the first data unit, (i) mapping, based on a second antenna mapping, the plurality of symbols to the plurality of antennas for transmitting a second data unit to the receiver, (ii) mapping, based on a different, second subcarrier mapping, the plurality of symbols to the plurality of subcarriers for transmitting the second data unit, and (iii) causing the second subcarrier mapping to be communicated to the receiver.
Abstract:
Systems and methods for suppressing interference from a data signal received at a receiving device, where the receiving device has two or more receive antennas, are provided. Characteristics of a channel are estimated, the channel being a channel through which the data signal was transmitted by a transmitting device to the receiving device. A spatial correlation of interference and noise received at the two or more receive antennas of the receiving device is determined based on the estimated characteristics of the channel. The spatial correlation indicates how the interference and noise received at a particular one of the receive antennas is related to the interference and noise received at another one of the receive antennas. The spatial correlation of the interference and noise is used to suppress interference and noise from the data signal received at the receiving device.
Abstract:
A first communication device allocates respective portions of a communication channel, that includes at least one primary component channel and one or more non-primary component channels, to a plurality of second communication devices, including a bandwidth-limited second communication device configured to operate with a maximum bandwidth that is less than a full bandwidth of the communication channel. The bandwidth-limited second communication device is operating in a particular component channel, and allocation of a frequency portion to the bandwidth-limited second communication device is restricted to the particular component channel. The first communication device transmits a data unit that includes one or both of: respective data for the second communication devices in the respective frequency portions allocated to the respective second communication devices, and one or more trigger frames to prompt transmission of respective data by the second communication devices in the respective frequency portions allocated to the respective second communication devices.
Abstract:
A first communication device generates a physical layer (PHY) preamble of a PHY data unit. A signal field of the PHY preamble includes i) a common block of information bits having information for multiple second communication devices and ii) a plurality of user blocks of information bits, each user block having information for a respective one of the multiple second communication devices. The common block includes a frequency resource unit allocation field that defines a plurality of frequency resource units corresponding to a PHY payload of the PHY data unit. The user blocks respectively correspond to frequency resource units defined by the frequency resource unit allocation field. Each user block includes an indication of a modulation and coding scheme (MCS) used in the corresponding frequency resource unit. Each group of two user blocks is encoded as a respective second encoded block to allow the multiple second communication devices to efficiently decode the signal field.
Abstract:
A first communication device receives a first data unit from a second communication device via one or more communication channels. The first data unit includes an indication of a first set of one or more sub-channels allocated to the first communication device, and the first data unit is configured to prompt the first communication device to transmit channel availability information as part of a subsequent orthogonal frequency division multiple access (OFDMA) transmission. The first communication device determines channel availability information for the one or more communication channels, and when the first communication device determines that at least one of the communication channels is idle, the first communication device transmits a second data unit to the second communication device in one or more sub-channels allocated to the first communication device as part of the OFDMA transmission, the second data unit including the channel availability information.
Abstract:
A first communication device transmits a null data packet (NDP) to multiple second communication devices. The NDP spans a channel frequency bandwidth. The first communication device receives a plurality of sounding feedback packets from the second communication devices. Each sounding feedback packet includes one or more signal-to-noise ratio (SNR) indicators corresponding to one or more respective groups of orthogonal frequency division multiplexing (OFDM) subcarriers, and the SNR indicators correspond to reception of the NDP at the plurality of second communication devices. Each sounding feedback packet in the plurality of sounding feedback packets includes a respective indication of OFDM subcarriers for which the sounding feedback packet includes SNR information, and at least one sounding feedback packet from among the plurality of sounding feedback packets does not include SNR information for all OFDM subcarriers via which the NDP was transmitted.
Abstract:
In a method of generating a field of a physical layer (PHY) preamble of a data unit, information bits to be included in the field are generated. Respective sets of tail bits are appended after respective sets of information bits corresponding to respective ones of a plurality of groups of subfields of the field, each group including one or more of the subfields of the field, to generate an encoder input bit stream. One or more padding bits are added to the encoder input stream to generate a padded encoder input bit stream, the one or more padding bits to ensure an integer number of puncturing blocks in an encoded output bit stream. The padded encoder input bit stream is encoded to generate the encoded output bit stream. The field is generated to include at least some bits from the encoded output bit stream.
Abstract:
Multiple trigger frames are generated at a first communication device to trigger an uplink orthogonal frequency multiple access (OFDMA) transmission by multiple second communication devices. The multiple trigger frames include a broadcast trigger frame that includes information to indicate transmission parameters for a first subset of the second communication devices, and one or more unicast trigger frames, each of the one or more unicast trigger frame including information to indicate transmission parameters for a particular second communication device in a second subset of the second communication devices. The broadcast trigger frame is transmitted, in a first frequency portion of a downlink OFDMA transmission, to the first subset of the second communication devices, and respective unicast trigger frames are transmitted, in respective second frequency portions of the downlink OFDMA transmission, to the second subset of the second communication devices.
Abstract:
A first communication device associated with a first communication network determines that a second communication device associated with a second communication network is located proximate to the first communication device. The first communication device generates a data unit that includes information indicating i) a color identifier of the second communication network, the color identifier usable to identify transmissions from the second communication network, and ii) that a dynamic clear channel assessment (CCA) procedure should not be used for transmissions from the second communication network. The first communication device transmits the data unit to at least one other communication device associated with the first communication network such that the at least one other communication device associated with the first communication network does not use the dynamic CCA procedure for transmissions identified as being from the second communication network.
Abstract:
Systems, apparatuses and methods described herein provide a method for padding a signal extension of orthogonal frequency-division multiplexing (OFDM) symbols. A transceiver may obtain a plurality of data symbols for transmission, and determine that a number of information bits for a last symbol of the plurality of data symbols is not an integer value. A special padding rule may be applied to add padding bits to the last symbol. A number of coded bits for the last symbol may be determined when the number of information bits for the last symbol has changed, and the plurality of data symbols for data transmission may be encoded based on the determined number of coded bits for the last symbol.