Abstract:
An apparatus and method for staggering forward and reverse channel time slot allocation in a wireless communication allows a wireless communication unit, such as a base station processor or a subscriber access unit, to transmit a return message in less than a full time slot interval. Forward and reverse channel allocation occurs as a cycle of time slots occurring at periodic timing intervals. Transmission of a wireless frame carrying a message payload occurs at the beginning of the time slot. Since the forward and reverse channel allocation cycles need not be concurrent, or in phase, these cycles may be staggered with respect to each other. By staggering the forward and reverse channel allocation timing interval, the return message is sent after only a portion of a full timing interval, rather than being delayed up to one complete timing interval.
Abstract:
A wireless network includes at least one Multiple Input Multiple Output (MIMO) wireless network station and two or more physical layer repeaters. Each of the physical layer repeaters is for receiving a wireless signal to or from the at least one MIMO wireless network station and re-transmitting the wireless signal while continuing to receive the wireless signal. The repeaters may be either frequency translating repeaters or non-frequency translating repeaters.
Abstract:
A subscriber access unit includes a transceiver for providing wireless communication of digital signals. The digital signals are communicated to a base station using at least one radio frequency (RF) channel via Code Division Multiple Access (CDMA) modulated radio signals defined by orthogonal codes. Orthogonal subchannels are made available by the base station within each CDMA RF channel. A bandwidth manager is connected to the transceiver, and when the transceiver is actively sending data, at least one orthogonal subchannel is allocated by the base station on an as-needed basis. The number of orthogonal subchannels being allocated changes during a given session. The transceiver, when powered on but not actively sending data, provides an idling mode connection on a reverse link. The idling mode connection is based on an orthogonal subchannel shared with at least one other subscriber access unit, but utilizes different time slots of the shared orthogonal subchannel.
Abstract:
A multiple-antenna device is provided, comprising: a printed circuit board having a ground plane configured to provide electromagnetic isolation between a first side of the printed circuit board and a second side of the printed circuit board; a first non-conductive support member formed over the first side of the printed circuit board; a second non-conductive support member formed over the second side of the printed circuit board; a first antenna formed over the first non-conductive support member; and a second antenna formed over the second non-conductive support member, wherein the first antenna is electrically connected to a first feed point on a first portion of the printed circuit board that is not connected to the ground plane, and wherein the second antenna is electrically connected to a second feed point on a second portion of the printed circuit board that is not connected to the ground plane.
Abstract:
A subscriber access unit includes a transceiver for providing wireless communication of digital signals. The digital signals are communicated to a base station using at least one radio frequency (RF) channel via Code Division Multiple Access (CDMA) modulated radio signals. Subchannels are made available by the base station within each CDMA RF channel. A bandwidth manager is connected to the transceiver, and is allocated available subchannels by the base station on an as-needed basis, with a number of allocated subchannels changing during a given session. The transceiver, when powered on but not actively sending data, provides an idling mode connection on a reverse link to the base station. The idling mode connection enables subchannels to be reallocated without reestablishing a bit synchronization with the base station.
Abstract:
A physical layer frequency translating repeater (600, 700) for use in a wireless network includes signal processor (710-714) coupled with a signal processing bus (711), a processor (627) and a memory (650). The physical layer repeater conducts physical layer repeating and selectively conducts layer 2 and possibly layer 3 functions depending on network conditions and other factors. A demodulator (623) can extract address information such as media access control (MAC) addressing to enable packets to be redirected, terminated, stored and forwarded, if necessary, based on network conditions.
Abstract:
Multiple field units in a CDMA system are synchronized for communication with a base station using shared forward and reverse link channels. In an illustrative embodiment, each field unit is assigned a time slot in a forward link channel to receive messages from the base station. Likewise, each field unit is assigned a time slot on a common reverse link channel for transmitting messages to the base station. Timing alignment and power level control among each of many field units and the base station is achieved by analyzing coded transmissions received at the base station in a corresponding time slot as transmitted by each field unit. The codes may be orthogonal, pseudonoise (PN), or other codes. The power level of forward control channel messages can thus be individually controlled. In this way, minimal resources are deployed to maintain communication and precise synchronization between a base station and each of multiple users, minimizing collisions between field units transmitting in adjacent time slots on the reverse link.
Abstract:
The present invention provides for making code rate adjustments and modulation type adjustments in a pseudonoise (PN) encoded CDMA system. Coding rate adjustments may be made by changing the number of information bits per symbol, or Forward Error Code (FEC) coding rate. A forward error correction (FEC) block size is maintained at a constant amount. Therefore, as the number of information bits per symbol are increased, an integer multiple of bits per epoch is always maintained. The scheme permits for a greater flexibility and selection of effective data rates providing information bit rates ranging from, for example, approximately 50 kilobits per second to over 5 mega bits per second (Mbps) in one preferred embodiment.
Abstract:
A method of managing the number of base station engaged in soft hand-off in a mobile communication system. The method involves manipulating a subscriber based directional antenna so as to control the number of base transceiver stations, pilot channels, beacon signals or other signals detected to be used in soft hand-off processing. The adaptive antennas are modified to manage the number of active set members, such as by manipulating direction, beamwidth, or other antenna parameters.
Abstract:
A subscriber controlled registration protocol, a subscriber monitors a congestion indicator signal broadcasted by a base station with which it desires to register. If the congestion indicator signal indicates that the base station is operating in a congested state, the mobile station selects another base station in the system. Otherwise, it attempts to register with the first selected base station.