Abstract:
Embodiments of a high-efficiency WLAN (HEW) master station and method for communicating in accordance with a scheduled OFDMA technique on secondary channels are generally described herein. An access point is configured to operate as part of a basic-service set (BSS) that includes a plurality of high-efficiency WLAN (HEW) stations and a plurality of legacy stations. The BSS operates on a primary channel and one or more secondary channels. In accordance with some embodiments, the access point may communicate with one or more of the HEW stations on one or more of the secondary channels in accordance with a scheduled OFDMA communication technique when the primary channel is utilized for communication with one or more of the legacy devices.
Abstract:
Methods, apparatuses, and computer readable media for signaling high-efficiency packet formats using a legacy portion of the preamble in wireless local-area networks are disclosed. A high-efficiency (HE) wireless local area network (HEW) device including circuitry is disclosed. The circuitry may be configured to generate a HE packet comprising a legacy signal field (L-SIG) followed by one or more HE signal fields, and configure the L-SIG to signal to a second HEW device either a first packet format of the HE packet or a second packet format of the HE packet, where a length of the L-SIG modulo 3 is used to signal the first packet format or the second packet format. The circuitry may be configured to generate a duplicated L-SIG field with a polarity difference to indicate a third packet configuration of the HE packet or a fourth packet configuration of the HE packet.
Abstract:
A satisfactory list detection (LD) receiver based on spatial modulation (SM) orthogonal frequency division multiplexing (OFDM) waveform is provided. In some embodiments, the LD receiver can implement a suboptimal LD detection process that relies on a reduced search space an optimal joint ML detection-based process for the SM-OFDM transmission mode. In some aspects, the overall search space for the optimal joint ML is determined by the total spectral efficiency, which can be divided into two information categories with two different search spaces defined by the number of bits of each category. As such, in some aspects, the LD receiver can permit detecting, with reduced complexity, antenna bits and data bits based on a determination of respective log-likelihood ratios.
Abstract:
Embodiments of a master station and method for high-efficiency Wi-Fi (HEW) communication using a multi-device HEW preamble are generally described herein. In some embodiments, the master station may select a number of long-training fields (LTFs) to be included in the multi-device HEW preamble of an HEW frame. The HEW frame may comprise a plurality of links for transmission of a plurality of streams. The master station may transmit the selected number of LTFs sequentially as part of the HEW preamble and transmit a plurality of data fields to scheduled stations during an HEW control period. Each data field may correspond to one of the links and may comprise one or more streams. The selection of the number of LTFs to be included in the HEW preamble may be based on a maximum number of streams to be transmitted on a single link.
Abstract:
Embodiments of a packet structure for frequency offset estimation and method for UL MU-MIMO communication in high-efficiency Wi-Fi (HEW) are generally described herein. In some embodiments, the packet structure may comprise a short training field (STF), a number of long-training fields (LTFs) following the STF, a signal field (SIGB)to follow the LTFs, and a data field to follow the signal field. The data field may comprise an UL MU-MIMO transmission from a plurality of scheduled stations. The number of LTFs may be equal to or greater than a number of data streams as part of the UL MU-MIMO transmission, and the plurality of scheduled stations may share the number of LTFs by transmitting on different orthogonal tone sets.
Abstract:
In a wireless network, a user equipment (UE) can communicate with an Evolved Node B (eNodeB). During at least some times, the UE transmits a data stream to the eNodeB, over one of several available antenna states on the UE. The antenna states can include one or more tuning states for each antenna port on the UE. At predetermined times, which can be periodic, the UE ceases transmission of the data stream, transmits a test signal sequentially over each of its antenna states, receives a signal back from the eNodeB indicating which of the antenna states provides the strongest signal, and switches to the indicated antenna state. After switching, the UE can resume transmission of the data stream over the indicated antenna state. In some examples, the UE can repeat the antenna tuning/retuning process periodically.
Abstract:
Embodiments of a master station and method for high-efficiency Wi-Fi (HEW) communication using traveling pilots are generally described herein. In some embodiments, the master station is arranged for communicating with a plurality of HEW and may be configured to transmit, during an initial portion of an HEW control period, a master-sync transmission that includes a multi-device HEW preamble arranged to signal and identify data fields for a plurality of scheduled HEW stations. The master station may transmit during the HEW control period the data fields with traveling pilots to the scheduled HEW stations. The master station may also receive data fields with traveling pilots transmitted by the scheduled HEW stations during the HEW control period. The traveling pilots may comprise pilot signals that are shifted among orthogonal-frequency multiplexed (OFDM) subcarriers during transmission of one or more of the data fields.
Abstract:
Embodiments of a high-efficiency WLAN (HEW) master station and method for communicating in a Wireless Network are generally described herein. In some embodiments, the HEW master station comprises a receiver configured to receive an uplink multi-user multiple-input multiple-output (MU-MIMO) transmission from a plurality of scheduled HEW stations. The uplink MU-MIMO transmission may comprise at least an HEW short-training field (STF) (HEW-STF) transmitted by each of the scheduled HEW stations. The HEW-STFs received from the HEW stations are distinguishable. The master station may process the HEW-STFs received from the scheduled HEW stations to set receiver gain for reception of UL-MIMO data from the scheduled HEW stations. In some embodiments, a single automatic gain control (AGC) setting may be determined from the combined HEW-STF resulting in improved receiver performance in UL MU-MIMO.
Abstract:
Embodiments of a system and methods for distinguishing high-efficiency Wi-Fi (HEW) packets from legacy packets are generally described herein. In some embodiments, an access point may select a value for the length field of a legacy signal field (L-SIG) that is non-divisible by three for communicating with HEW stations and may select a value for the length field that is divisible by three for communicating with legacy stations. In some embodiments, the access point may select a phase rotation for application to the BPSK modulation of at least one of the first and second symbols of a subsequent signal field to distinguish a high-throughput (HT) PPDU, a very-high throughput (VHT) PPDU and an HEW PPDU.