Abstract:
Methods, devices and system are provided. One method includes capturing activity data associated with activity of a user via a device. The activity data is captured over time, and the activity data is quantifiable by a plurality of metrics. The method includes storing the activity data in storage of the device and, from time to time, connecting the device with a computing device over a wireless communication link. The method defines using a first transfer rate for transferring activity data captured and stored over a period of time. The first transfer rate is used following startup of an activity tracking application on the computing device The method also defines using a second transfer rate for transferring activity data from the device to the computing device for display of the activity data in substantial-real time on the computing device.
Abstract:
In one aspect of the disclosed implementations, a device includes one or more motion sensors for sensing motion of the device and providing activity data indicative of the sensed motion. The device also includes one or more processors for monitoring the activity data, and receiving or generating annotation data for annotating the activity data with one or more markers or indicators to define one or more characteristics of an activity session. The device also includes one or more feedback devices for providing feedback, a notice, or an indication to a user based on the monitoring. The device further includes a portable housing that encloses at least portions of the motion sensors, the processors and the feedback devices.
Abstract:
A method includes receiving location data of a monitoring device when carried by a user and receiving motion data of the monitoring device. The motion data is associated with a time of occurrence and the location data. The method includes processing the received motion data to identify a group of the motion data having a substantially common characteristic and processing the location data for the group of the motion data. The group of motion data by way of processing the location data provides an activity identifier. The motion data includes metric data that identifies characteristics of the motion data. The method includes transferring the activity identifier and the characteristics of the motion data to a screen of a device for display. The activity identifier being a graphical user interface that receives an input for rendering more or less of the characteristics of the motion data.
Abstract:
In one aspect of the disclosed implementations, a device includes one or more motion sensors for sensing motion of the device and providing activity data indicative of the sensed motion. The device also includes one or more processors for monitoring the activity data, and receiving or generating annotation data for annotating the activity data with one or more markers or indicators to define one or more characteristics of an activity session. The device also includes one or more feedback devices for providing feedback, a notice, or an indication to a user based on the monitoring. The device further includes a portable housing that encloses at least portions of the motion sensors, the processors and the feedback devices.
Abstract:
The present inventions, in one aspect, are directed to a portable activity monitoring device comprising a housing having a physical size and shape that is adapted to couple to the user's body, a plurality of sensors (for example, motion sensor and altitude sensor) disposed in the housing. The monitoring device may further include processing circuitry, disposed in the housing and electrically coupled to the plurality of sensor, to calculate the activity points corresponding to the physical activity of the user using the sensor data, wherein the activity points correlate to an amount and intensity of the physical activity of the user, and output the data which is representative of the activity points. The monitoring device may also include a display, coupled to the processing circuitry, may output the data which is representative of the activity points to the user.
Abstract:
The present inventions, in one aspect, are directed to a portable activity monitoring device comprising a housing having a physical size and shape that is adapted to couple to the user's body, a plurality of sensors (for example, motion sensor and altitude sensor) disposed in the housing. The monitoring device may further include processing circuitry, disposed in the housing and electrically coupled to the plurality of sensor, to calculate the activity points corresponding to the physical activity of the user using the sensor data, wherein the activity points correlate to an amount and intensity of the physical activity of the user, and output the data which is representative of the activity points. The monitoring device may also include a display, coupled to the processing circuitry, may output the data which is representative of the activity points to the user.
Abstract:
Assisted-GPS for a portable biometric monitoring device is provided. The portable biometric monitoring device may obtain updated ephemeris data from an associated secondary device via a short-range, low-power communication protocol. The secondary device may be a computing device such as a smartphone, tablet, or laptop. Various rules may control when the ephemeris data is updated. The ephemeris data may be used in the calculation of the global position of the portable biometric monitoring device. Additionally, the portable biometric monitoring device may communicate downloaded position fixing data to the associated secondary device. The associated secondary device may then calculate the global position from the position fixing data.
Abstract:
A system comprising a biometric monitoring device including a housing including a platform to receive at least one foot of the user, a body weight sensor to generate body weight data, processing circuitry to calculate user weight data which corresponds to the user's weight, using the body weight data, and communication circuitry to: (a) receive user identification data which identifies the user or a portable activity monitoring device, and (b) transmit the user weight data to data storage associated with the user identification data. The system further includes the portable activity monitoring device including a housing having a physical size and shape that is adapted to couple to the user's body, a sensor to generate sensor data, and communication circuitry to receive physiologic data which is based on the user weight data, and processing circuitry to calculate activity data using the sensor data and physiologic data.
Abstract:
A system comprising a biometric monitoring device including a housing including a platform to receive at least one foot of the user, a body weight sensor to generate body weight data, processing circuitry to calculate user weight data which corresponds to the user's weight, using the body weight data, and communication circuitry to: (a) receive user identification data which identifies the user or a portable activity monitoring device, and (b) transmit the user weight data to data storage associated with the user identification data. The system further includes the portable activity monitoring device including a housing having a physical size and shape that is adapted to couple to the user's body, a sensor to generate sensor data, and communication circuitry to receive physiologic data which is based on the user weight data, and processing circuitry to calculate activity data using the sensor data and physiologic data.