Abstract:
An activity monitoring device, methods and computer readable media are provided. The activity monitoring device includes a housing configured for attachment to a body part of a user and a display screen attached to the housing. Further included is a first sensor disposed in the housing for capturing motion of the activity monitoring device when attached to the body part of the user and a second sensor disposed in the housing for sampling a heart rate of the user. Memory is disposed in the housing for storing the motion captured by the first sensor and the heart rate sampled by the second sensor. A processor is disposed in the housing and is configured to determine a physical state of the user during a period of time. For motion that is below a threshold the processor identifies the physical state to be a sedentary state and for motion that is at or above the threshold the processor identifies the physical state to be an active state. The processor is configured to reduce a rate at which to sample the heart rate of the user when the physical state of the user is identified to be the sedentary state during the period of time. The processor is configured to increase the rate at which the sampling of the heart rate of the user is processed when the physical state of the user is identified to be the active state during the period of time.
Abstract:
A biometric monitoring device and multiple carrying cases for same are provided. In some implementations, the case may be made from a flexible viscoelastic material and the biometric monitoring device may be slipped into a receptacle in the case through an opening in the case; the opening may become distended during the insertion of the biometric monitoring device. In some implementations, the case may feature a display window that, in combination with materials of the biometric monitoring device, may mask a display of the biometric monitoring device from view when the display is off and may allow the display to be seen when the display is displaying content.
Abstract:
Biometric monitoring devices, including various technologies that may be implemented in such devices, are discussed herein. Additionally, techniques, systems, and apparatuses are discussed herein for providing a hybrid antenna including an RF radiator and an electrically coupled inductive loop. The hybrid antenna is capable of providing both RF and induction functionality, e.g., radio frequency transmission/reception capabilities for Bluetooth as well as near-field-communications (NFC) functionality via the inductive loop. The inductive loop may be in conductive contact with the RF radiator or may be inductively coupled with the RF radiator and not in conductive contact with the RF radiator. The inductive loop may act as a planar element of a planar inverted-F antenna (PIFA).
Abstract:
A biometric monitoring device and multiple carrying cases for same are provided. In some implementations, the case may be made from a flexible viscoelastic material and the biometric monitoring device may be slipped into a receptacle in the case through an opening in the case; the opening may become distended during the insertion of the biometric monitoring device. In some implementations, the case may feature a display window that, in combination with materials of the biometric monitoring device, may mask a display of the biometric monitoring device from view when the display is off and may allow the display to be seen when the display is displaying content.
Abstract:
A biometric monitoring device and multiple carrying cases for same are provided. In some implementations, the case may be made from a flexible viscoelastic material and the biometric monitoring device may be slipped into a receptacle in the case through an opening in the case; the opening may become distended during the insertion of the biometric monitoring device. In some implementations, the case may feature a display window that, in combination with materials of the biometric monitoring device, may mask a display of the biometric monitoring device from view when the display is off and may allow the display to be seen when the display is displaying content.
Abstract:
The present inventions, in one aspect, are directed to portable biometric monitoring device including a housing having a physical size and shape that is adapted to couple to the user's body, at least one band to secure the monitoring device to the user, a physiological sensor, disposed in the housing, to generate data which is representative of a physiological condition of the user data. The physiological sensor may include a light source to generate and output light having at least a first wavelength, and a photodetector to detect scattered light (e.g., from the user). A light pipe is disposed in the housing and optically coupled to the light source directs/transmits light therefrom along a predetermined path to an outer surface of the housing. Processing circuitry calculates a heart rate of the user using data which is representative of the scattered light.
Abstract:
An activity monitoring device, methods and computer readable media are provided. The activity monitoring device includes a housing configured for attachment to a body part of a user and a display screen attached to the housing. Further included is a first sensor disposed in the housing for capturing motion of the activity monitoring device when attached to the body part of the user and a second sensor disposed in the housing for sampling a heart rate of the user. Memory is disposed in the housing for storing the motion captured by the first sensor and the heart rate sampled by the second sensor. A processor is disposed in the housing and is configured to determine a physical state of the user during a period of time. For motion that is below a threshold the processor identifies the physical state to be a sedentary state and for motion that is at or above the threshold the processor identifies the physical state to be an active state. The processor is configured to reduce a rate at which to sample the heart rate of the user when the physical state of the user is identified to be the sedentary state during the period of time. The processor is configured to increase the rate at which the sampling of the heart rate of the user is processed when the physical state of the user is identified to be the active state during the period of time.