Abstract:
A projection display system includes a spatial modulator that is controlled to compensate for flare in a lens of the projector. The spatial modulator increases achievable intra-frame contrast and facilitates increased peak luminance without unacceptable black levels. Some embodiments provide 3D projection systems in which the spatial modulator is combined with a polarization control panel.
Abstract:
A locally dimmed display has a spatial light modulator illuminated by a light source. The spatial light modulator is illuminated with a low resolution version of a desired image. The illumination may comprise a series of lighting elements that vary smoothly from one element to another at the spatial light modulator.
Abstract:
A data structure defining a high dynamic range image comprises a tone map having a reduced dynamic range and HDR information. The high dynamic range image can be reconstructed from the tone map and the HDR information. The data structure can be backwards compatible with legacy hardware or software viewers. The data structure may comprise a JFIF file having the tone map encoded as a JPEG image with the HDR information in an application extension or comment field of the JFIF file, or a MPEG file having the tone map encoded as a MPEG image with the HDR information in a video or audio channel of the MPEG file. Apparatus and methods for encoding or decoding the data structure may apply pre- or post correction to compensate for lossy encoding of the high dynamic range information.
Abstract:
Representation and coding of multi-view images using tapestry encoding are described for standard and enhanced dynamic ranges compatibility. A tapestry comprises information on a tapestry image, a left-shift displacement map and a right-shift displacement map. Perspective images of a scene can be generated from the tapestry and the displacement maps. Different methods for achieving compatibility are described.
Abstract:
Techniques are provided to encode and decode image data comprising a tone mapped (TM) image with HDR reconstruction data in the form of luminance ratios and color residual values. In an example embodiment, luminance ratio values and residual values in color channels of a color space are generated on an individual pixel basis based on a high dynamic range (HDR) image and a derivative tone-mapped (TM) image that comprises one or more color alterations that would not be recoverable from the TM image with a luminance ratio image. The TM image with HDR reconstruction data derived from the luminance ratio values and the color-channel residual values may be outputted in an image file to a downstream device, for example, for decoding, rendering, and/or storing. The image file may be decoded to generate a restored HDR image free of the color alterations.
Abstract:
Techniques are described to combine image data from multiple images with different exposures into a relatively high dynamic range image. A first image of a scene may be generated with a first operational mode of an image processing system. A second image of the scene may be generated with a second different operational mode of the image processing system. The first image may be of a first spatial resolution, while the second image may be of a second spatial resolution. For example, the first spatial resolution may be higher than the second spatial resolution. The first image and the second image may be combined into an output image of the scene. The output image may be of a higher dynamic range than either of the first image and the second image and may be of a spatial resolution higher than the second spatial resolution.
Abstract:
A data structure defining a high dynamic range image comprises a tone map having a reduced dynamic range and HDR information. The high dynamic range image can be reconstructed from the tone map and the HDR information. The data structure can be backwards compatible with legacy hardware or software viewers. The data structure may comprise a JFIF file having the tone map encoded as a JPEG image with the HDR information in an application extension or comment field of the JFIF file, or a MPEG file having the tone map encoded as a MPEG image with the HDR information in a video or audio channel of the MPEG file. Apparatus and methods for encoding or decoding the data structure may apply pre- or post correction to compensate for lossy encoding of the high dynamic range information.
Abstract:
Methods and apparatus according to various aspects take as input image data in a lower-dynamic-range (LDR) format and produce as output enhanced image data having a dynamic range greater than that of the input image data (i.e. higher-dynamic range (HDR) image data). In some embodiments, the methods are applied to video data and are performed in real-time (i.e. processing of video frames to enhance the dynamic range of the video frames is completed at least on average at the frame rate of the video signal).
Abstract:
A locally dimmed display has a spatial light modulator illuminated by a light source. The spatial light modulator is illuminated with a low resolution version of a desired image. The illumination may comprise a series of lighting elements that vary smoothly from one element to another at the spatial light modulator.
Abstract:
A backlight for a display comprises a plurality of independently controllable light sources and inclined surfaces inclining in a radially outward direction from each light source for shaping the distribution of emitted light. The light sources may each comprise a group of differently-colored light emitters. The backlight may include light integrators configured to mix light of the differently-colored light emitters. Inclined surfaces for shaping the distribution of emitted light may be arranged around exits of the light integrators.