Abstract:
Systems and methods for OFDM channelization are provided that allow for the coexistence of sub-band channels and diversity channels. Methods of defining diversity sub-channels and sub-band sub-channels are provided and systematic channel definition and labeling schemes are provided.
Abstract:
Various methods and systems are provided for allocating time-frequency resources for downlink (DL) and uplink (UL) communications between base stations and mobile stations. Different forms of resource allocation messages including combinations of bitmaps and bitfields provide additional information about the resources and/or how they are assigned. In some implementations the resource allocation messages enable reduced overhead, which may ultimately improve transmission rates and/or the quality of transmissions.
Abstract:
A method for transmitting data in a multiple-input-multiple-output space-time coded communication using a mapping table mapping a plurality of symbols defining the communication to respective antennae from amongst a plurality of transmission antennae and to at least one other transmission resource. The mapping table may comprise Alamouti-coded primary segments and may also comprise secondary segments, comprising primary segments. The primary segments in the secondary segments may be defined in accordance to an to Alamouti based code pattern applied at the segment level to define a segment-level Alamouti based code.
Abstract:
Systems and methods for OFDM channelization are provided that allow for the coexistence of sub-band channels and diversity channels. Methods of defining diversity sub-channels and sub-band sub-channels are provided and systematic channel definition and labeling schemes are provided.
Abstract:
A method and system are provided having an uplink control structure and a pilot signal having minimal signal overhead for providing channel estimation and data demodulation in a wireless communication network. The uplink control structures enable mobile terminals to communicate with corresponding base stations to perform various functions including obtaining initial system access, submitting a bandwidth request, triggering a continuation of negotiated service, or providing a proposed allocation re-configuration header. A dedicated random access channel is provided to communicatively couple the base station and the mobile terminal so that the mobile terminal can select a random access signaling identification. A resource request is received at the base station to uplink resource information from the mobile terminal and an initial access information request is received from the mobile terminal to configure the base station connection. Pilot signals with varying density configurations are provided to include low density symbol patterns for multiple contiguous resource blocks and high density symbol patterns for single resource blocks.
Abstract:
Systems and methods for OFDM channelization are provided that allow for the coexistence of sub-band channels and diversity channels. Methods of defining diversity sub-channels and sub-band sub-channels are provided and systematic channel definition and labeling schemes are provided.
Abstract:
To effectively and efficiently provide control information, a broadcast pointer channel (BPCH) may be used to identify the type and perhaps relative location of control information that is being provided in a given frame structure, such as a sub-frame, frame, or superframe. A sub-frame (or like framing entity, such a frame or superframe) may have a BPCH and a corresponding system control information segment in which control information may reside. The system control information segment may have any number of control information blocks, wherein each control information block that is present may correspond to a particular type of control information. The BPCH is used to identify the type of control information that is present in a corresponding system control information segment, and if needed or desired, the relative locations of the various control information.
Abstract:
Within a wireless network, a control segment is communicated between a base station and a mobile station, where the control segment is for assigning resources for communication of data in the wireless network. The control segment includes an index that maps to information to enable determination of the assigned resources.
Abstract:
An uplink control structure and pilot signal having minimal signal overhead for providing channel estimation and data demodulation in a wireless communication network are presented. The uplink control structure enables mobile terminals to communicate with base stations to perform various functions including obtaining initial system access, submitting a bandwidth request, triggering a continuation of negotiated service, or providing a proposed allocation re-configuration header. A dedicated random access channel is provided to communicatively couple the base station and mobile terminal allowing the mobile terminal to select a random access signaling identification. A resource request is received at the base station to uplink resource information from the mobile terminal and an initial access information request is received from the mobile terminal to configure the base station connection. Pilot signals with varying density configurations are provided, including low density symbol patterns for multiple contiguous resource blocks and high density symbol patterns for single resource blocks.
Abstract:
Methods described herein are for wireless communication systems. One aspect of the invention is directed to a method for a HARQ process, in which the HARQ process includes a first transmission of an encoder packet and at least one retransmission. The method involves allocating a transmission resource for each respective transmission. The method involves transmitting control information from a base station to a mobile station for each respective transmission. The control information includes information to uniquely identify the HARQ process and an identification of one of a time resource, a frequency resource and a time and frequency resource that is allocated for the transmission. Other aspects of the invention are directed to acknowledging a downlink HARQ transmission, rescheduling an uplink HARQ transmission, and error recovery for an uplink HARQ transmission.