Abstract:
A nonvolatile semiconductor memory device is provided which includes a memory array, a page buffer, and a row decoder. The memory array includes a plurality of nonvolatile memory cells, a bit line, and a word line, and the row decoder driven to control the word line of the memory array. The page buffer is electrically connected to the bit line and includes a main data latch and a sub-data latch. The page buffer, which is configured such that flipping of the man data latch is inhibited according to a logic state of the sub-data latch, further includes a main latch block, a sub-latch block, and a latch control block. The main latch block drives the main data latch and maps a logic state of the main data latch to a threshold voltage of a corresponding memory cell through the bit line. The sub-latch block drives the sub-data latch, where the sub-data latch is flipped depending on the voltage level of the bit line. The latch control block selectively flips the main data latch depending on the voltage level of the bit line, where the latch control block is disabled depending on a logic state of the sub-data latch.
Abstract:
The invention provides a programming method for a flash memory device including first and second bitlines connected with a plurality of memory cells for storing multi-bit data indicating one of a plurality of states. The program method may include programming memory cells, connected with a selected row and the second bitlines, with multi-bit data; determining whether the selected row is the last row; and reprogramming programmed memory cells connected with the selected row being the last row and the first bitlines when the determination result is that the selected row is the last row.
Abstract:
According to one aspect, a memory cell array includes a bit line connected to a plurality of nonvolatile memory cells, where the nonvolatile memory cells are selectively programmable in any one of at least first, second, third and fourth threshold voltage states, and where the first, second, third and fourth threshold voltage states correspond to four different data values defined by first and second bits. A page buffer circuit stores a logic value as main latch data and is responsive to a main latch signal to selectively flip the logic value of the main latch data according to a voltage level of the bit line. A sub-latch circuit stores a logic value as sub-latch data and is responsive to a sub-latch signal to selectively flip the logic value of the sub-latch data according to the voltage level of the bit line. The memory device is operable in a read mode which reads the threshold voltage state of the non-volatile memory cells and a programming mode which programs the threshold voltage state of the non-volatile memory cells, wherein the page buffer circuit is selectively responsive to the sub-latch data to inhibit flipping of the logic value of the main latch data in the programming mode.
Abstract:
Disclosed is a non-volatile memory device and a method of erasing the non-volatile memory device. An erase voltage is simultaneously applied to a plurality of sectors contained in the non-volatile memory device. Then, erase validation is sequentially performed for each of the plurality sectors and results of the erase validation are stored in a plurality of pass information registers. According to the results stored in the pass information registers, sectors which were not successfully erased are simultaneously re-erased and then sequentially re-validated until no such “failed sectors” remain in the non-volatile memory device. Upon eliminating the “failed sectors” from the non-volatile memory device, a post-program operation is sequentially performed on each of the plurality of sectors.
Abstract:
The present invention provides a program method of a flash memory device including a plurality of memory cells for storing multi-bit data indicating one of a plurality of states. The memory cells are subjected to a primary program operation. Those memory cells arranged within a specific region of respective states are subjected to a secondary program operation to have a threshold voltage equivalent to or higher than a verify voltage used in the primary program operation. Thus, although a threshold voltage distribution is widened due to an electric field coupling/F-poly coupling and HTS, a read margin between adjacent states may be sufficiently secured using the program method.
Abstract:
In a NOR flash memory device with a serial sensing operation, and method of sensing data bits in a NOR flash memory device, the device includes a multilevel cell, a sense amplifying circuit, a data buffer, a data latch circuit, and a control logic circuit. The sense amplifying circuit serially detects plural data bits stored in the multilevel cell. The data buffer is provided to buffer the data bit detected by the sense amplifier. The data latch circuit stores an output value of the data buffer for a time. The control logic circuit regulates the sense amplifying circuit to detect a lower data bit stored in the multilevel cell in response to a higher data bit held in the data latch. Here, the control logic circuit initializes an output terminal of the data buffer before or while sensing each of the plural data bits by the sense amplifier. According to the invention, a stabilized serial sensing operation can be conducted because the data line is conditioned to a uniform charge level regardless of the level of the data bit previously sensed.
Abstract:
A burst mode compatible semiconductor memory device having a redundancy memory adapted to repair a normal memory is disclosed. Response margin for a redundancy flag signal and redundancy driving method is improved by sensing generation of an internal address corresponding to an embedded address, and generating a redundancy flag signal, such that the embedded address is an address preceding the address of the memory cell of the normal cell array to be repaired by at least one clock.
Abstract:
A method of programming a nonvolatile memory device including a plurality of memory cells includes providing a plurality of program loops having a corresponding plurality of program voltages associated therewith. A first one of the plurality of program loops is activated to generate a first program voltage to program a first one of the plurality of memory cells. A second one of the plurality of program loops is activated to generate a second program voltage to program a second one of the plurality of memory cells. Related devices are also discussed.
Abstract:
A NAND flash memory device and a programming method thereof capable of improving a program speed during a multi-level cell programming operation are provided. The device performs a programming operation using an ISPP method. Additionally, the device includes a memory cell storing multi-bit data; a program voltage generating circuit generating a program voltage to be supplied to the memory cell; and a program voltage controller controlling a start level of the program voltage. The device supplies an LSB start voltage to a selected word line during an LSB program, and an MSB start voltage higher than the LSB start voltage to the selected word line during an MSB program.
Abstract:
A flash memory device can include a first redundancy circuit configured to provide read repair information for read operations to the flash memory. The flash memory device can also include a second redundancy circuit, separate from the first redundancy circuit, configured to provide write repair information for write operations to the flash memory. The flash memory device can include a dedicated-read operation redundancy circuit configured to provide read repair information and a dedicated-write operation redundancy circuit configured to provide write repair information. The flash memory device can include also include a first redundancy circuit configured to store an address of a defective memory cell in the flash memory and a second redundancy circuit, separate from the first redundancy circuit, configured to store the address of the defective memory cell.