Abstract:
An encoder using LDPC (low density parity check) codes, and an encoding method. The encoder comprises a parity check matrix generator for generating a parity check matrix H; and a codeword generator for processing the parity check matrix H to generate a codeword, and the codeword generator comprises: an AB analyzer for analyzing the parity check matrix H into matrixes A and B; a pivoting unit for pivoting the parity check matrix H; a bit-reversing unit for bit-reversing the pivoted matrix; an LU analyzer for analyzing the matrix A into matrixes L and U; and a codeword generator unit for performing a logical operation on the matrixes A, B, L and U. A bit-reversing method is used to effectively generate a parity check matrix having a high girth by using a regular encoder.
Abstract:
Disclosed is a ranging system and method in an OFDMA system. The ranging system includes complex exponential twiddle storage units for respectively storing complex exponential twiddle factors corresponding to a timing error, complex multipliers for respectively complex-multiplying the complex exponential twiddle factors by received uplink ranging data, code correlators for respectively correlating the outputs of the complex multipliers and ranging codes, and threshold comparators for respectively comparing the outputs of the code correlators with a threshold.
Abstract:
Disclosed is an apparatus and method for processing a ranging channel in an OFDMA system. The apparatus converts received ranging complex signals to polar coordinate signals having a signal magnitude and a phase, and the received converted signals are each represented by a signal magnitude component and a phase component. A predetermined phase component of a signal according to a phase rotation is used to estimate a time delay by an addition operation of the phase of the received signal and the phase according to the phase rotation. Accordingly, the time delay and the power of each reverse link user of the OFDMA mobile communication system can be calculated by arithmetic operations of addition components instead of multiplication components, resulting in the reduction of complexity.
Abstract:
A receiver in a multiple-input multiple-output (MIMO) system is provided. The receiver includes a channel estimator estimating a channel based on a receiving signal, a minimum mean square error (MMSE) based reciprocal log likelihood ratio (R-LLR) calculator connected with the channel estimator and calculating an R-LLR based on the receiving signal and the estimated channel, and a channel decoder connected with the MMSE based R-LLR calculator and decoding the channel and the receiving signal based on the calculated R-LLR, wherein the R-LLR is calculated based on the reciprocity.
Abstract:
When a base station of a time division duplex based mobile communication system receives an initial ranging request signal from a subscriber station, the base station generates initial ranging information including delay time information to the subscriber station, and receives uplink data delayed and transmitted using a delay time from the subscriber station. Also, when the subscriber station transmits an initial ranging request signal to the base station and receives initial ranging information including delay time information from the base station, the subscriber station establishes a transmission parameter value by using the transmission parameter value included in the initial ranging information and transmits uplink data by using the established delay time.
Abstract:
An optical repeater in a mobile communication system includes a main hub unit (MHU) and a plurality of repeaters connected to a plurality of access points of the MHU, respectively. Each of the repeaters receives subcarrier information and a signal transmitted from a base station, as optical signals, through the MHU or a different repeater connected thereto, processes only a signal corresponding to a subcarrier allocated to a terminal which has accessed according to the subcarrier information, and transmits the processed signal to the terminal which has accessed. Also, each of the repeaters maps a signal of the terminal which has accessed to a subcarrier allocated to the terminal which has accessed, and transmits the same to the MHU or a different repeater connected thereto.
Abstract:
A method of allocating a resource by a base station is provided. The base station allocates a plurality of radio resources for transmitting a plurality of data bursts to a plurality of subframes in one frame, respectively, and generates a resource allocation information signal including allocation information on the plurality of radio resources. The base station transmits the resource allocation information signal to a mobile station through one subframe.
Abstract:
There is provided a method and apparatus for estimating a signal to noise ratio (SNR) in a wireless communication system. The apparatus selects a preamble signal for each of a plurality of sectors from a reception signal experienced by fast Fourier transform (FFT), outputs a correlation signal by performing a correlation between the preamble signal for each sector and a preamble reference signal, estimates power of the reception signal and noise power for each sector based on the correlation signal, selects a minimum value from among the noise powers for the sectors, outputs a net power for each sector by subtracting the minimum value from the power of the reception signal for each sector, and calculates the SNR by dividing the net power for each sector by the minimum value.
Abstract:
The present invention relates to an apparatus and method of estimating a channel based on a channel delay spread in a mobile communication system. Pilot subcarriers are inserted between data subcarriers at predetermined intervals to estimate a channel at locations of the pilot subcarriers. An approximate channel delay spread value is estimated by using an autocorrelation value of a pilot signal. Then, a channel for data subcarriers between the pilot subcarriers is estimated by using a Wiener finite impulse response (FIR) filter that has a separate coefficient according to the estimated delay spread value. Accordingly, by changing the Wiener FIR filter coefficient according to the delay spread value of the channel, it is possible to estimate the channel so as to be adaptive for a change of the channel over time. Since the filter coefficients, which are calculated in advance, are used, it is possible to reduce the amount of calculation required when calculating the filter coefficients. As a result, an apparatus for estimating a channel can be easily achieved.
Abstract:
In a signal monitoring apparatus of a base station of a communication system having multiple antennas, a transmitting/receiving unit transmits a plurality of transmit signals by using the multiple antennas or processes a plurality of receive signals received through the multiple antennas. A radio frequency calibration unit calibrates the transmit signals transmitted through the multiple antennas, and processes at least one target transmit signal among the plurality of transmit signals so as to monitor the at least one target transmit signal. A signal monitoring unit receives at least one first signal or at least one second signal, and transmits the at least one first signal or the at least one second signal to user equipment. The at least one first signal is a signal processed from at least one target receive signal among the plurality of receive signals, and the at least one second signal is a signal processed from the at least one target transmit signal by controlling the radio frequency calibration unit.