Abstract:
In one of its aspects the technology disclosed herein concerns a method of operating a receiver. The method comprises performing symbol detection by (1) receiving a frequency-domain signal that comprises contribution from time-domain symbols transmitted from one or more transmit antennas; (2) generating a transformation matrix and a triangular matrix based on a frequency domain channel response; (3) using the transformation matrix to transform the received frequency-domain signal to obtain a transformed frequency-domain signal; and (4) performing symbol detection by performing plural stages of detection, each stage of detection using elements of the transformed frequency-domain received signal associated with the detection stage.
Abstract:
In a distributed antenna system that includes a plurality of transmitters and a controller, a method, performed by the controller, may be characterized by performing dirty-paper coding on downlink transmissions to users based on an order of the users, calculating beamforming vectors to provide that each of the downlink transmissions associated with each of the users does not interfere with other users, and maximizing, based on the calculated beamforming vectors, a data rate subject to a power constraint of the distributed antenna system.
Abstract:
An iterative, blind, frequency-offset estimation process that does not require any training signal or demodulated information symbols is disclosed. Receivers embodying the disclosed processes can produce periodic frequency-offset estimates, without running computationally intensive equalization or demodulation algorithms, by exploiting the temporal correlation of the received signal in the time domain, as well as the received signal's correlation across in-phase and quadrature dimensions, in some embodiments, to find a frequency-offset estimate that best fits the received signal in a maximum-likelihood sense. In an exemplary method of estimating receiver frequency offset, a spatially stacked signal block is formed from multi-branch signal samples corresponding to each of two or more time-separated samples of the received signal. The spatially stacked signal block is used in computing a maximum-likelihood joint estimate of the receiver frequency offset and the spatial covariance of the spatially stacked signal block de-rotated by the receiver frequency offset.
Abstract:
Systems and methods are disclosed for providing energy efficient operation for wireless access nodes in a dense deployment of wireless access nodes in a cellular communication network. In one particular embodiment, wireless access nodes form a super dense network. In one embodiment, a wireless access node in a dense deployment of wireless access nodes in a cellular communication network includes a transmitter and a receiver that are operated according to a discontinuous transmit and a discontinuous receive mode of operation. The wireless access node controls one or more duty cycles for the discontinuous transmit and discontinuous receive mode of operation based on an alertness state of the wireless access node. In one embodiment, the one or more duty cycles increase as the alertness state of the wireless access node increases. In this manner, the wireless access node is operated in an energy efficient manner.
Abstract:
A backhaul link is established between a base station and a relay that assists the base station in communicating with a mobile device over an access link established between the relay and the mobile device. The channel response of the back-haul link is determined by estimating first and second parts of the backhaul link channel response, the second part changing faster than the first part. The first part of the backhaul link channel response is estimated by calculating an average of the backhaul link channel response over a predetermined period at the relay and the second part is estimated by calculating variation in the backhaul link channel response over the predetermined period at the relay. Quantized versions of the first and second parts of the backhaul link channel response are transmitted from the relay to the base station over the backhaul link
Abstract:
A Coordinated MultiPoint (CoMP) cell controller performs network-centric link adaptation for User Equipment (UE) in the CoMP cell. The CoMP cell controller receives at least infrequent channel estimates from a UE in the CoMP cell, from which it estimates downlink channel and thermal noise at the UE. The CoMP cell controller is aware of the desired signal to be received at the UE, and the intra-CoMP cell interference to the UE caused by transmissions to other UEs in the CoMP cell. The CoMP cell receives from the UE reports of inter-CoMP cell interference caused by transmissions by other CoMP cells. Based on the downlink channel quality, the desired signal, the intra-CoMP cell interference, the inter-CoMP cell interference, and the thermal noise, the CoMP cell controller performs link adaptation by selecting modulation and coding schemes, and other transmission parameters, for an upcoming transmission duration (such as a TTI).
Abstract:
The amount of multi-antenna signals to be transmitted over the backhaul in a Coordinated MultiPoint (CoMP) system from the central processor (CP) to each base station is reduced. Embodiments of the present invention exploit characteristics of the underlying signal structure, and distribute some baseband processing functionalities—such as channel coding and the application of the multi-user precoding—from the CP to the remote base stations. Additionally, in some embodiments the non-precoded parts of multi-antenna signals are broadcast from the CP to all base stations in the CoMP system, to further reduce the burden on backhaul communications. In one embodiment, the backhaul network is a Gigabit-capable Passive Optical Network (GPON).
Abstract:
The present invention provides a method of generating mutually orthogonal reference signals for different user terminals in and OFDM system that span different but overlapping subcarriers. The subcarriers allocated to the user terminals are divided into a plurality of non-overlapping subcarrier blocks. Each user terminal is then allocated one or more subcarrier blocks. For each subcarrier block, a user terminal is assigned a reference signal comprising a base reference sequence and a linear phase rotation. To ensure mutual orthogonality among all user terminals, user terminals allocated the same subcarrier block use the same base reference sequence with different linear phase rotations.
Abstract:
A UE in a wireless communication network transmits succinct, direct channel state information to the network, enabling coordinated multipoint calculations such as joint processing, without substantially increasing uplink overhead. The UE receives and processes reference symbols over a set of non-uniformly spaced sub-carriers, selected according to a scheme synchronized to the network. The frequency response for each selected sub-carrier is estimated conventionally, and the results quantized and transmitted to the network on an uplink control channel. The non-uniform sub-carrier selection may be synchronized to the network in a variety of ways.
Abstract:
In a Coordinated Multi-point (CoMP) system, the base station (BS) in each serving cell (or sector) is allowed to use not only its own antennas, but also the antennas of neighboring BSs to transmit to mobile terminals in the serving cell to form a floating CoMP cell. The serving BS in each floating CoMP cell computes tentative linear precoding weights for transmissions from the coordinating BSs in the floating CoMP cell to users in the serving cell of the floating CoMP cell. The serving BS determines the power availability for transmit antennas in the floating CoMP cell that are shared with other floating CoMP cells, and scales the tentative precoding weights based on the power availability of the shared transmit antennas to determine final precoding weights so that the power constraints of the shared transmit antennas will not be violated.