Abstract:
A method for producing at least one oscillation measurement signal, which has vibrations of a vibratory body are registered. A temperature sensor is applied thermally attached with a non fluid contacting, second surface of the vibratory body for producing a temperature measurement signal representing a time curve of a variable temperature of the vibratory body. The temperature measurement signal can follow, however time delayed, a change of the temperature of the vibratory body from a beginning temperature value, to a new temperature value. Based on the oscillation measurement signal as well as the temperature measurement signal, density, measured values are produced representing the density, wherein, during such, discrepancies possibly occurring between the time curve of the temperature of the vibratory body and the temperature measurement signal are taken into consideration, respectively at least partially compensated.
Abstract:
A measuring arrangement comprising: a support element having a longitudinal axis, wherein a sensor for ascertaining a process variable of a gaseous or liquid fluid is arranged on the support element; and the sensor, wherein the sensor has a fluid duct, which extends within the sensor. The support element has a fluid duct, and for mechanical connection of the fluid duct with the fluid duct of the sensor a bonding layer, which extends over a portion of a surface of the support element and over a portion of a surface of the sensor. The bonding layer comprises at least one fluorinated polymer. The support element has for connection of the fluid duct of the support element with the fluid duct of the sensor, in each case, at least one connection element, which protrude from the support element perpendicularly to the longitudinal axis and which protrude inwardly into the fluid duct of the sensor. The connection elements are secured at least to a the sensor by means of a bonding layer, and wherein the bonding layer comprises a fluorinated polymer.
Abstract:
The measuring transducer comprises four measuring tubes (181, 182, 183, 184) as well as two oscillation exciters and (51, 52). The oscillation exciter (51) includes a coil (511) secured to the measuring tube (181) as well as a permanent magnet (512) secured to the measuring tube (182) and movable relative to the coil (511) and the oscillation exciter (52) includes a coil (521) secured to the measuring tube (183) as well as a permanent magnet (522) secured to the measuring tube (184) and movable relative to the coil (521). In the case of the measuring transducer of the invention, the coils (511, 521) are connected electrically in parallel with one another.
Abstract:
A method for verifying the reliability of ascertained measurement data of an ultrasonic, flow measurement made according to the travel-time difference method, wherein an ultrasonic flow measuring device having at least two ultrasonic transducers is used to transmit and receive ultrasonic signals inclined in or counter to a flow direction of a measured medium. A first ultrasound disturbance signal is registered within a first time window before receiving a first ultrasound wanted signal, and a second ultrasound disturbance signal is registered within a second time window before receiving a second ultrasound wanted signal. A quality criterion is ascertained for evaluating the measurement uncertainty of a measured value proportional to the travel-time difference ascertained from the first and second ultrasound wanted signals, wherein the ascertaining of the quality criterion includes a difference forming between the first and second disturbance signals.
Abstract:
A measuring transducer for registering and/or monitoring at least one process variable of a flowable medium guided in a pipeline, which at least includes: a housing module, which is mechanically coupled with the pipeline via an inlet end and an outlet end, and a sensor module having at least one measuring tube held oscillatably at least partially in the housing module and caused, at least at times, to oscillate. The at least one component of the housing module and/or of the sensor module is manufactured by means of a generative method and method for manufacturing at least one component of a measuring transducer, which method includes manufacturing the at least one component by means of a primary forming process, especially by means of a layered applying and/or melting-on of a powder, especially a metal powder, based on a digital data set, which gives at least the shape and/or the material and/or the structure of the at least one component.
Abstract:
The measuring tube of the in-line measuring device is formed by means of a support tube and a liner internally lining the support tube. The liner adheres to the support tube, with interposition of a mediating primer. Both the primer and the liner are composed, at least in part, of polyurethane. Especially, both the polyurethane of the liner and also the polyurethane of the primer are suitable for drinking water applications, so that the in-line measuring device itself is also suited for measuring drinking water.
Abstract:
A vortex flow transducer for measuring the flow velocity of a fluid flowing in a measuring tube as well as to a vortex flow sensor for the vortex flow transducer. In such case, the vortex flow sensor includes a housing having a central axis and a connecting section, on which a shoulder is embodied, which has a bearing area. In a plane of the shoulder a membrane is arranged, whose edge is positioned over the bearing area and is axially spaced therefrom. The vortex flow sensor includes, furthermore, a flange shaped support system having a radial edge section and a cylindrical axial section, wherein the radial edge section lies with its surface against the shoulder of the platform and the cylindrical axial section extends parallel to the central axis, so that the membrane is supported against the support system upon application of a predetermined pressure on the membrane.
Abstract:
A fill level monitoring system comprising at least one electrode for monitoring the fill level of a medium flowing in a pipe or tube, wherein the electrode has an integrated temperature sensor, wherein the fill level monitoring system further comprises an evaluation unit, which is embodied for monitoring the degree of filling of the pipe or tube and transmits a warning signal when the degree of filling subceeds a limit value, preferably a degree of filling of less than 80% of the tube diameter; and a flow measuring device having this fill level monitoring system.
Abstract:
A method for the manufacture of a sensor for a thermal flow measuring device, wherein the sensor has at least one housing with a first open end and a second open end. The first open end is securable in a sensor holder; and at least one resistance thermometer is inserted into the housing through the second open end of the housing and the second open end of the housing is closed. Cables for electrical contacting of the resistance thermometer lead out of the housing through the first open end of the housing.