摘要:
The present invention relates to a vehicle comprising: an internal combustion engine operable to rotate a crank shaft of the internal combustion engine; a transmission; at least one driving wheel rotationally connected to the transmission; a damping system arranged between the internal combustion engine and the transmission for dampening irregularity motions of the crank shaft, the damping system comprising an output splined portion; wherein the transmission is arranged for controllably rotationally connecting the output splined portion of the damping system to provide torque from the internal combustion engine to the at least one driving wheel via the transmission, wherein the output splined portion of the damping system is adapted to mate with a splined portion of a coupling shaft of the transmission for connecting the crank shaft to the transmission via the damping system.
摘要:
A damper system includes a turbine shaft rotatably connected to a torque converter having a clutch. A hydraulically actuated clutch is coupled to the turbine shaft. A first spring cage has a first cage portion connected to the hydraulically actuated clutch and a second cage portion connected to a friction plate. A first spring set is connected to the first and second cage portions. Springs of the first spring set are deflected by axial rotation between the first and second cage portions when the torque converter clutch is engaged. A second spring cage has a first cage section connected to the hydraulically actuated clutch and a second cage section connected to a torque converter turbine. A second spring set has second springs having a spring constant different than the first spring set. The second spring set springs are deflected by axial rotation between the first and second cage sections.
摘要:
A power generator unit includes a crankshaft-connecting unit and a power supply unit adapted to be arranged substantially in a left-right direction in which a crankshaft of a vehicle extends. The crankshaft-connecting unit includes a recharge generator adapted to be disposed on and actuated by the crankshaft, and a transmission shaft adapted to extend in parallel with and be driven rotatably by the crankshaft. The power supply unit includes a main shaft connected coaxially to the transmission shaft, and a supply generator connected to the main shaft and actuated by the main shaft. A portion of the transmission shaft is covered by the power supply unit.
摘要:
Transmission group for vehicles comprising an engine provided with at least one engaging device, arranged between transmission gears and mobile between a first rest position, wherein the transmission gears are mutually integral and both in mesh with a transmission shaft, and a second working position wherein the first gear is in mesh with the transmission shaft and the second gear is unconstrained both with respect to the transmission shaft and with respect to the gear, provided for being means for actuating of the engage device, wherein the engine, the output gear and an output shaft are integrated in a first module fixed to the vehicle and that the transmission shaft, the transmission gears, the engage device and the actuating means thereof are integrated in a second module independent and demountable with respect to the first module.
摘要:
A method for generating and verifying an output command for using in a power steering system is provided. The method receives, by a module having at least a primary processing path and a secondary processing path that is in parallel with the primary processing path, a set of input signals. In the primary processing path, the method generates a primary output command based on the set of input signals and sends the primary output command out of the module. In the secondary processing path, the method generates a first range of command values based on the set of input signals, determines whether the primary output command falls within the range of command values, and generates a fault signal based on determining that the primary output command does not fall within the first range of command values.
摘要:
A transmission having an integrated gear and brake mechanism is disposed in a housing, the transmission having a variable drive mechanism, gear train, and an output axle engaged to the gear train. The output axle is driven by a final drive gear having an integrated drum brake within its circumference.
摘要:
A fluid accumulator assembly used with 2002 to 2005 model years of ZF Getriebe's GmbH ZF-6HP19, ZF-6HP26, ZF-6HP32 automatic transmissions, and model years up to 2011 of Ford's 6R60 automatic transmissions. The fluid accumulator assembly includes a piston that can be received into a bore that is in fluid communication with a solenoid-controlled fluid circuit of the transmission. The fluid accumulator assembly also includes a compression spring sized and configured to fit within the piston, and used to provide an urging force to the piston.
摘要:
A gear assembly includes first and second shafts concentric with one another. First and second gears are respectively provided by the first and second shafts and are arranged adjacent to one another. A biasing assembly cooperates with at least one of the first and second shafts to maintain a desired gap between the first and second gears.
摘要:
For driving an extruder (1) having disposed along a circle a plurality of shafts (3) with processing elements (4), the shafts (3) are connected to the output shafts (11) of a gearing (7) which are provided with output pinions (12, 13). The output pinions (12, 13) are disposed axially offset so that adjacent output shafts (11) have a different length (L1, L2) between the end facing the extruder (1) and the output pinion (12, 13). The axially offset output pinions (12, 13) are in engagement each with a sun gear (18, 19). One sun gear (19) is connected to a hollow torque shaft (21) and the other sun gear (18) to an inner torque shaft (22) disposed therewithin. The hollow torque shaft (21) and the inner torque shaft (22) are configured such that the difference in torsional rotation angle caused by the different length (L1, L2) of the output shafts (11) is compensated by a different torsion of the hollow torque shaft (21) and the inner torque shaft (22).