摘要:
A dielectric resonator oscillator utilizing transmission-type injection-locking for frequency stabilization is disclosed as including a transistor, two microstrip lines, and a dielectric resonator. One microstrip line is coupled to the transistor, while the other microstrip line receives the broadband signal. The dielectric resonator is positioned adjacent to and between the first and second microstrip lines and is operable for coupling an injection-locking signal into the transistor for locking the oscillation frequency of the oscillator. The two microstrip lines are preferably oriented at right angles so that various sizes of the dielectric resonator can be accommodated.
摘要:
A frequency stable RF oscillator 10 comprises a variable frequency RF source in the form of a microwave cavity 24 having a Gunn diode 26 and a varactor 28 mounted therein, and produces an RF output frequency f.sub.o. The output of a frequency stable reference oscillator 14 having a frequency f.sub.r is impressed upon the RF source. Through self-mixing action of the Gunn diode, an IF whose frequency is f.sub.IF =.vertline.nf.sub.r -f.sub.o .vertline. is generated, n being a high harmonic number. The IF is detected by an IF amplifier 18 which forms part of a frequency lock loop controlling the frequency of the RF source.
摘要:
The output signal frequencies of two current controlled oscillators are made to track closely by matching timing currents with a current mirror. A frequency difference between the output signals is obtained by establishing an additional timing current for only one of said oscillators.
摘要:
A frequency synthesizer having a delay line for a controlling element. The output frequency of a voltage controlled oscillator (VCO) is sampled with a directional coupler and input to an in-phase power divider. The first output of the power divider is input to a delay line to provide a delayed signal. The delayed signal and the non-delayed signal from the second output of the power divider are input to a phase detector. The output of the phase detector is a DC voltage representative of the phase difference between the delayed signal and the non-delayed signal. An analog gate inputs the phase detector output to an oscillator driver that controls the VCO. When the phase difference deviates from a predetermined level the oscillator driver outputs an error voltage to adjust the VCO until the proper phase difference is achieved which will be a condition of phase lock wherein the output frequency is phase locked to the delay line. The predetermined phase difference is determined by the delay of the delay line and the characteristics of the phase detector. A digital-to-analog converter also controls the oscillator driver providing a coarse tuning control for entering new frequency data. A strobe signal will open the analog gate, thus disconnecting the phase detector, when new frequency data is input. When the analog gate is closed the frequency synthesizer will again seek a phase lock condition.
摘要:
A clock recovery network uses a voltage proportional to the incoming symbol rate as a coarse tuning signal to control the tuned center frequency of a voltage controlled oscillator. The incoming data is used to positively synchronize the oscillator to the incoming data stream.
摘要:
A system is disclosed for synchronizing a free-swinging oscillator to a reference signal of a substantially lower frequency. A regulating circuit connects to the oscillator to control the frequency thereof. A quartz oscillator is provided for producing the reference signal. The reference signal is subsequently connected to a frequency multiplier and/or frequency divider, an amplifier and a pass band filter. An output signal from the pass band filter is fed to a harmonics mixer connected to the free-swinging oscillator and which produces a pattern of harmonics. A selective amplifier feeds an intermediate frequency obtained from the harmonics mixer to the regulator circuit. A filter also connected to the quartz oscillator produces harmonics which are also coupled to the regulating circuit. By phase or frequency comparison the regulating circuit adjusts the running frequency of the free-swinging oscillator.
摘要:
A circuit for synchronizing an oscillator keyed by a pulse is provided with a low amplitude reference oscillation. A phase shift regulating loop has a phase discriminator which is fed, on one hand, with a branched component of the oscillator output and, on the other hand, with the reference oscillation. The phase discriminator compares the phases of the two oscillators and emits a resultant regulating voltage an adjustable reactance for controlling the oscillator frequency during the leading edge of the keying pulse. A phase shift device, adjustable over 180.degree., is connected between the oscillator and the phase discriminator, the phase discriminator having a high-ohmic output which is connected, via an impedance converter, to the adjustable reactance. A sampling switch is interposed between the impedance converter and the adjustable reactance, the switch being closed at the beginning of a pulse and opened shortly before the end of a pulse, the pulses being of predetermined duration, and a holding circuit holds the regulating voltage at least to an approximate value across the adjustable reactance prior to the end of a pulse, until the closing of the sampling switch.
摘要:
A circuit is presented which has the capability of dividing an input frequency by an integer in order to achieve an output frequency within a specified range. This dynamic dividing circuit is capable of multi-gigabit rate operation.
摘要:
A stable low-noise high frequency signal source comprises a primary high frequency generator stabilized by a high-qualityfactor transmission resonator, the primary generator output also being injection phase locked by a stable secondary high frequency quartz crystal controlled generator.
摘要:
A locked oscillator system is composed of a series array of modules each containing a unit oscillator in parallel with a bypass conductor and coupling means including a particularly adjusted phase shifter. Adjustment of the phase shifter in each module establishes the proportion of power that is directed to the unit oscillator device rather than to the bypass conductor of the next module. By appropriate adjustment of the phase shifters, equal synchronizing power is applied to each unit oscillator, and the remainder of the output power is applied directly to the load.