Abstract:
Laminate structure suitable for use as electrical insulation comprising: a) a corona-resistant layer comprising 90 to 99 weight percent uniformly distributed calcined mica and 1 to 10 weight percent aramid material, the aramid material being in the form of floc, fibrid, or mixtures thereof; b) a support layer comprising unidirectional or woven filament yarns, the support layer having a first and second face; and c) a resin-compatible layer comprising 60 to 80 weight percent uniformly distributed uncalcined mica and 20 to 40 weight percent aramid material, the aramid material being in the form of floc, fibrid, or mixtures thereof; wherein the first face of the support layer is directly bound to the corona-resistant layer and the second face of the support layer is directly bound to the resin-compatible layer; the laminate structure having a total mica content of 60 weight percent or greater.
Abstract:
Embodiments described herein provide methods of processing an electronic component, comprising mixing a bio-based polymer having sulfur-reactive substituents with a sulfurization catalyst and a solvent to form a coating material; applying the coating material to an electronic component; and removing the solvent to form a sulfur-reactive polymer coating that is resistant to sulfur penetration. The bio-based polymer may be made by bacterial fermentation of unsaturated fatty acids.
Abstract:
It is aimed to suppress the peeling of an adhesive from an insulation coating of an insulated electrical cable due to resin shrink after the molding of a molded member. A molded part-equipped electrical cable includes a terminal-equipped electrical cable with an insulated electrical cable and a terminal, an adhesive provided on a surface of the insulation coating of the terminal-equipped electrical cable and a molded member covering from a part provided with the adhesive on the insulation coating of the terminal-equipped electrical cable to a connected part of the insulated electrical cable and the terminal. The molded member includes a first molded part and a second molded part separately molded, and the first molded part includes a part covering the adhesive while being in contact with the adhesive.
Abstract:
A wiring harness sheet (1) includes a foam (3) formed into a sheet, a film (5) provided onto one of the front and back surfaces of the foam (3), and an adhesive layer (7) provided onto another of the front and back surfaces of the foam (3). A hardness of the film (5) is set at a Shore hardness within a range of A60 to A92.
Abstract:
A protector (20) includes a main body (22) shaped along an extending direction of a member to be protected and a lid (40) capable of surrounding the member to be protected together with the main body (22). Further, the protector (20) includes a pressing piece (46) including a first hinge (48) having one end connected to an outward facing surface of the lid (40) and a projecting piece (50) connected to the other end of the first hinge (48), the lid (40) and the projecting piece (50) being biased in opening directions by the first hinge (48), a lock (30) provided on the main body (22), and a locked portion (52) provided on the projecting piece (50) and lockable to the lock (30) with the projecting piece (50) held close to the outward facing surface of the lid (40).
Abstract:
A composition for forming a silica-based insulation layer, a silica-based insulation layer, and a method of manufacturing the silica-based insulation layer, the composition including a solvent; and an organosilane-based condensation polymerization product, the organosilane-based condensation polymerization product being prepared from a compound mixture, the compound mixture including compounds represented by the following Chemical Formulae 1 and 2: (R1)3SiXSi(R1)3 [Chemical Formula 1] R2e(Si)OR34-e. [Chemical Formula 2]
Abstract:
Disclosed herein are an insulating film and a producing method of the insulating film which can address problems caused by dents by providing a reinforcing layer having the weight ratio of the silica of 60 to 80 wt % on one surface of the insulating film.
Abstract:
An electrical circuit with large creepage isolation distances is provided. In some embodiments, the electrical circuit is capable of increasing creepage isolation distances by many multiples over traditional electrical circuits. In one embodiment, an electrical circuit comprises a ground circuit optically coupled to a floating circuit, and an isolated circuit optically coupled to the floating circuit. The circuits can be optically coupled with opto-isolators, for example. The isolated circuit can have a creepage isolation distance at least twice as large as a traditional circuit. In some embodiments, “n” number of floating circuits can be optically coupled between the ground circuit and the isolated circuit to increase the total creepage isolation distance by a factor of “n”. Methods of use are also described.
Abstract:
A high field/high voltage unit comprising at least one electrical component (4) and a solid insulating material (20) in the form of a first and a second piece part (10, 11) which form, in particular, hard foam half bodies and a method of manufacturing same is disclosed. The piece parts (10, 11) each have an inner structure comprising a plurality of preformed cavities (3) in which electrical components (4) are fixed. After assembly, the piece parts (10, 11) form a closed casing of the high field/high voltage unit so that no extra steel vessel is necessary. Conductive paths (5, 6) for the interconnection of the components are integrated into the insulating material (20) using for example an insert technology. Since several functions can thus be integrated into the solid insulating material (20), a simple solution for assembling and disassembling an oil/gas filled high field/high voltage unit like a high voltage generator for an X-ray tube is realized.
Abstract:
A technique and system for insulating conductors is provided in which insulating tubes are formed by winding insulating tape on a mandrel, with two or more layers of tape being wound in the same or opposite helical directions. The layers are bonded to one another and multiple tubes are formed in a series which can be nestingly assembled. The tubes are selected based upon the insulation rating desired and the size of a conductor. The tubes are assembled on the conductor and bonded to one another and to the conductor.