Abstract:
An apparatus and method for using a single bank of electric fuses (eFuses) to successively store test data derived from multiple stages of testing are provided. To encode and store array redundancy data from each subsequent test in the same bank of eFuses, a latch on a scan chain is used that holds the programming information for each eFuse. This latch allows for programming only a portion of eFuses during each stage of testing. Moreover, the data programmed in the eFuses can be sensed and read as part of a scan chain. Thus, it can be easily determined what portions of the bank of eFuses have already been programmed by a previous stage of testing and where to start programming the next set of data into the bank of eFuses. As a result, the single bank of eFuses stores multiple sets of data from a plurality of test stages.
Abstract:
An optical memory having an input port for receiving an input optical signal to be stored in the optical memory is disclosed. A portion of the optical signal is coupled to a storage loop for storing optical signals by a coupler that transfers a portion of the input optical signal to the storage loop. An optical signal stored in the storage loop is output by coupling a portion of that optical signal to a first external optical waveguide. The storage loop includes a semiconductor optical amplifier for amplifying the signals stored in the storage loop to compensate for losses incurred by those signals in traversing the storage loop. A plurality of such optical memories can be combined to form a larger memory that includes a reconditioning circuit that resets the amplitude of the optical signals to a value that depends on the amplitude of the optical signals.
Abstract:
A regenerative optical memory comprising a number of concatenated non-linear switching elements coupled by an optical storage element has a transfer function arranged so that only optical data having a pulse amplitude above a predetermined threshold is stored and the amplitude of optical data stored is substantially equalised to at least one predetermined level after a number of circulations within the optical memory. In a preferred embodiment, the optical memory is provided with an optical switching element within the optical loop for selectively switching at least a portion of the data pattern out of the optical loop in response to the application of an optical signal to an input of the optical switching element to alter the contents of the memory.
Abstract:
A memory device having an addressing unit for addressing different values as addresses for input/output of data for each clock input during one cycle, and a memory inputting data at different designated addresses and cyclically outputting stored data. The memory device provides the operation of a shift register which is capable of determining the number of stages in accordance with the content of the addressing. By employing a memory which effects read-modify-write operations and by delivering input data obtained by the feedback of output data to this memory, the memory device can repeatedly output the same data. The memory device has a switch circuit operative in a first position for connecting an output of the memory to an input of the memory and in a second position for connecting the input of the memory to an external data source.
Abstract:
An optical parallel-to-serial converter constructed from at least two optical shift registers coupled in cascade by an optical two-to-one combiner. The input port of the first optical shift register serves as one input to the parallel-to-serial converter, an extra optical combiner optically coupled to the last of said optical shift registers serves as one input port, while the optical combiners coupling said optical shift registers serve as the other input ports receiving parallel optical pulses. The output port of the last of said cascaded optical shift registers serves as the output port of the parallel-to-serial converter. The shift registers are controlled by two clocks, operating at the same rate, but each out of phase with the other, providing control signals to shift and output said optical pulses serially from said shift registers to effect a parallel-to-serial conversion.
Abstract:
A storage system based on the propagation delay of light is disclosed which utilizes an array of fiber optics to store the information. The storage device is configured as two loops. Data is injected from one loop and data is continuously recirculated for storage in the other loop. A pulsed laser provides the clocked energy source and is split for use, both, in recirculating the data, and for new data injection. Multiple channels of light are extracted by using a diffraction grating. The source may be interrupted to erase data in the recirculating memory. Recirculation takes place over a single strand fiber optics coil of any length. Multiple frequency encoded channels of data are multiplexed into the single strand of fiber optic with an integrating lens and the channels are decoupled on the other end with a diffraction grating. To prevent compounding signal degradation, optical switches are used to regenerate the signal at each pass through the loop. A beam splitter in the recirculating loop provides for data extraction through the use of a photosensor array. Data is injected into the recirculating loop by pulsing in light using electro-optical shutters. The device is useful for data storage in optical and digital computing. The device may also be used as a platform for recursive optical computing by the placement of optical computing components within the recirculating memory loop.
Abstract:
A fiber optic recirculating memory comprises a splice-free length of optical fiber which forms a loop that is optically closed by means of a fiber optic coupler. The coupler couples an optical signal input pulse to the loop for circulation therein, and outputs a portion of the signal pulse on each circulation to provide a series of output pulses. A pump source is included to pump the fiber loop with a pump signal having sufficient intensity to cause stimulated Raman scattering in the fiber loop, and thereby cause amplification of the circulating signal pulse. The fiber characteristics, coupler characteristics, and pump power are selected to yield a Raman gain which compensates for the total round-trip losses in the fiber loop, so as to provide an output pulse train of constant amplitude pulses. The invention may be implemented utilizing either a standard coupler or a multiplexing coupler. The multiplexing coupler advantageously permits independent selection of the coupling ratios for the pump signal and signal pulse, thereby allowing these coupling ratios to be selected for minimum loop loss and maximum pumping efficiency.
Abstract:
A data processing apparatus in which a memory (10) is accessed at addresses stored in an address regiser (20). An incrementation circuit (38) successively increments or decrements the address stored in the principal register, under the control of an address cycling circuit (22). A pair of auxiliary registers (30, 35) respectively store the minimum and maximum address values to be reached in the principal register, and a comparison circuit (37) determines when the address therein matches the minimum or maximum value. The address cycling circuit, together with the comparison circuit, loads the principal register with the minimum address value when the address therein reaches the maximum value, the address therein thereafter being decremented, and loads it with the maximum address value when the address therein reaches the minimum value, the address therein thereafter being incremented. Such operation is particularly useful for preforming the functions of a fixed or adaptive transversal filter for data transmission, the data stored in the memory being the filter coefficients.
Abstract:
A fiber optic recirculating memory comprises a splice-free length of optical fiber which forms a loop that is optically closed by means of a fiber optic coupler. The coupler couples an optical signal input pulse to the loop for circulation therein, and outputs a portion of the signal pulse on each circulation to provide a series of output pulses. A pump source is included to pump the fiber loop with a pump signal having sufficient intensity to cause stimulated Raman scattering in the fiber loop, and thereby cause amplification of the circulating signal pulse. The fiber characteristics, coupler characteristics, and pump power are selected to yield a Raman gain which compensates for the total round-trip losses in the fiber loop, so as to provide an output pulse train of constant amplitude pulses. The invention may be implemented utilizing either a standard coupler or a multiplexing coupler. The multiplexing coupler advantageously permits independent selection of the coupling ratios for the pump signal and signal pulse, thereby allowing these coupling ratios to be selected for minimum loop loss and maximum pumping efficiency.
Abstract:
A fiber optic recirculating memory is disclosed which utilizes dual couplers to form a splice-free recirculating memory device from a length of single mode optical fiber forming a loop which acts as a delay line and a second length of single mode optical fiber which provides an input end and an output end for the device. A single signal supplied as an input to the device will result in a series of output signals identical to the input signal, although at smaller, decreasing amplitudes; the invention prevents the first output signal from being substantially larger than the rest of the output signals, thus eliminating the need for protective circuitry on the output end or the rejection of the first output signal. In addition to being useful as a recirculating memory device for use in a system where data is generated at a rate faster than it can be accepted by a data processor, the invention may be used as a tap filter to pass a selected fundamental frequency and its harmonics, and to attenuate all other frequencies.