Abstract:
The invention concerns a microbolometer comprising a suspended part (2) containing radiation-sensitive elements and consisting of a set of first zones (2A) and a set of second zones (2B), the two sets being superimposed; furthermore, the materials constituting said zones (2A) and (2B) have thermal expansion coefficients sufficiently different for said suspended part (2) to be deformed under the effect of a rise in temperature to be urged into contact with the substrate (1) when the contact zone reaches a temperature Tc less than the destruction temperature Td of the microbolometer. The invention is applicable to radiation detectors comprising an assembly of such microbolometers, and to various appliances comprising at least such a radiation detector.
Abstract:
Apparatus for determining the temperature profile of the surface being sprayed or otherwise treated, the apparatus comprising four electric arc spray guns (1) spraying molten steel. The guns (1) are connected to a six-axis industrial robot (2) which is adapted to move them over the surface of the ceramic substrate.(3). The metal deposited by the spray builds up a metal shell referred to as the sprayform. The temperature profile of the sprayform surface (3) is recorded periodically by a thermal imaging camera (4) positioned directly above the surface (3). When the field of view of the camera (4) is not obscured by the robot (2), the arc spray guns (1) or their cables (5), the thermal image of the whole sprayform surface (3) can be recorded. However, when the arc spray guns (1), their cables (5) and/or the robot (2) are positioned between the thermal camera (4) and the sprayform surface (3), at least part of sprayform surface (3) is obscured relative to the camera's field of view, with the result that large areas of the resultant thermal image may not be representative of the temperature of the sprayform surface (3). The apparatus includes a pruning filter for receiving each pixel of an image captured by the camera (4) and for applying at least a lower temperature limit to it so as to reject or disregard any pixels determined to have a temperature less than the lower temperature limit. The apparatus may also comprise storage means for storing a master image or array comprising temperature information relating to each of a plurality of pixels intended to be representative of an unobscured image of the surface, and means for updating the master image when the camera (4) captures a new thermal image of the surface by replacing the stored temperature information with updated temperature information obtained from the new thermal image for each of the pixels not rejected or disregarded by the filter means. Alternatively, or in addition, the apparatus may include a Kalman filter or the like which may be used to predict the temperature profile of the surface using the pixels not rejected or disregarded by the pruning filter.
Abstract:
A two-color radiation thermometer includes an image pickup device having micro photo receiving units arranged two-dimensionally; a light diverging device for diverging incident light coming from a measuring object into two paths and irradiating the light on two different areas on a two-dimensional light receiving surface of the image pickup device; a wavelength limitation device for limiting wavelengths of the light irradiated on the two different areas to first and second wavelengths, respectively; and a temperature calculation device. The calculation device receives image signals corresponding to the first and second wavelengths respectively from the micro photo receiving units located at the two different areas, and calculates the temperature of the measuring object based on the two image signals.
Abstract:
A motor vehicle has a video system that analyzes images of the interior of the vehicle to detect certain characteristics for controlling functions of the vehicle, such as detecting the presence of a person on the seat to control deployment of air bags in the event of a crash. The system employs infrared light to illuminate the vehicle interior without affecting the driver's ability to see the highway. In order to distinguish different objects in the image which have similar colors, such as a person dressed in black sitting on a black seat, a selected object, such as the seat, are coated with a substance that alters the object's reflectivity to infrared light, while not changing the reflectivity to visible light. Thus analysis of the infrared image can distinguish between the objects without affecting the appearance of the vehicle interior to a human user.
Abstract:
An apparatus for selectively limiting undesired radiation from a scene is provided. One embodiment includes an optic that is operative to attenuate radiation by selectively losing transparency in response to radiation within a first wavelength band from a source, wherein the loss of transparency affects the passage through the optic of radiation within a second wavelength band from that source. The optic can be positioned between a sensor and the scene such that the sensor is configured to receive radiation from the scene through the optic. Also disclosed is an optical limiter which in one embodiment includes a plurality of such optics, wherein the optical limiter is configured to facilitate transmission of light corresponding to a scene, and wherein each optic is configured to receive a respective portion of the light corresponding to a respective portion of the scene. A light detector assembly and a method of limiting light energy are further disclosed.
Abstract:
An Al film is formed on a cap wafer and the Al film is patterned into a ring-shaped film. Dry etching is performed by using the ring-shaped film as a mask to form a drum portion enclosing a recess portion to provide a vacuum dome. After forming a depth of cut into the substrate portion of the cap wafer, the cap wafer is placed on a main body wafer having an infrared area sensor formed thereon. Then, the ring-shaped film of the cap wafer and the ring-shaped film of the main body wafer are joined to each other by pressure bonding to form a ring-shaped joining portion.
Abstract:
A signal (Snormai) is provided to a heat element of a temperature sensor, which is recorded as a step response (Lruh, Lbew). From the difference of the step response compared with the reaction adaptively determined with the temperature sensor at zero air circulation, air flow or no air flow is determined.
Abstract:
Scene-independent baseline signals in output value signals from radiometer or receiver channels used in millimeter wave imaging are eliminated or reduced and an improved image is composed. The scene-independent baseline signals are believed to result from a standing wave which is established between an antenna of the channel and a movable scanning element which scans radiant energy from the scene into each channel. The movable scanning element introduces changes in geometry which change the characteristics of the baseline signals depending upon the position of the movable scanning element. The baseline signals are measured by viewing a scene of uniform brightness temperature, and the baseline signal contribution is subtracted from the output value signals from each channel. The baseline compensated output signals are used to compose an image with better contrast.
Abstract:
A method for obtaining position data relating to a probe in the ear canal whereby a probe is inserted into the ear canal, the method further comprising the steps of:nulldetermine the distance from the distal portion of the probe to at least one point of the internal circumferential surface of the ear and/or car canal,nullobtaining position data using first transducing means associated with the distal portion of the probe and second transducing means fixed relative to the head of the person, where the first transducing means is transmitting a magnetic field, and the second transducing means are detecting the magnetic field generated by the transmitter. The invention also relates to an apparatus for obtaining position data relating to a probe in the ear canal.
Abstract:
An infrared image sensor encompasses (a) a base body, (b) a plurality of signal lines disposed on the base body, (c) a plurality of address lines intersecting the signal lines, (d) a plurality of detector portions provided in the cross region of the signal lines and the address lines, each of the detector portions being connected between the corresponding signal line and the address line, each of the detector portions is configured to detect infrared-ray, (e) a plurality of supporting beams supporting each of the detector portions above the base body, and (f) a plurality of contactors configured to contact each of the detector portions with the base body thermally so as to transport thermal energy to be accumulated in each of the detector portions toward the base body.