Abstract:
A symbol detector with a sphere decoding method implemented therein. A baseband signal is received to determine a maximum likelihood solution using the sphere decoding algorithm. A QR decomposer performs a QR decomposition process on a channel response matrix to generate a Q matrix and an R matrix. A matrix transformer generates an inner product matrix of the Q matrix and the received signal. A scheduler reorganizes a search tree, and takes a search mission apart into a plurality of independent branch missions, wherein the search tree defines a full search depth Nfull. A plurality of Euclidean distance calculators are controlled by the scheduler to operate in parallel, wherein each has a plurality of calculation units cascaded in a pipeline structure to search for the maximum likelihood solution based on the R matrix and the inner product matrix.
Abstract:
A system and method for inter-cell interference avoidance. A base station is configured to perform interference avoidance. The base station receives feedback information from either a second base station or a subscriber station served by the second base station. The base station selects a codebook vectors or matrices for transmission to subscriber stations based, at least in part, on a portion of the feedback information. The base station is further configured to select which subscriber stations will participate in interference avoidance calculations.
Abstract:
Embodiments of the present invention provide a method, apparatus and system of decoding spatially multiplexed signals. In some demonstrative embodiments the method may include, for example, determining one or more hypothetical values of a transmitted signal of a set of transmitted signals based on one or more respective sets of hypothetical values assigned to a subset of the set of transmitted signals. Other embodiments are described and claimed;
Abstract:
An apparatus including a processor configured to receive a digital communication signal, wherein the digital communication signal includes a common reference signal and transmitted data. The processor determines a first interfering channel matrix for a first interfering cell based on a channel estimation of the common reference signal, and estimates a first power offset ratio and a first effective pre-coding matrix for the first interfering cell by evaluating a maximum likelihood metric, wherein the maximum likelihood metric is based on a first interfering channel correlation. The processor then reconstructs a channel covariance matrix based on the estimated first power offset ratio and the first effective pre-coding matrix and detects the transmitted data based on the reconstructed channel covariance matrix.
Abstract:
An electronic device and method for signal detection in a wireless communication system is provided. The electronic device includes a receiving unit configured to receive a radio frequency (RF) signal, a control unit configured to process the received signal, wherein processing the received signal comprises canceling a signal corresponding to a first stage in the received signal, detecting a signal corresponding to a second stage by applying lattice reduction, and determining a final detected signal by combining the detected signal corresponding to the second stage with candidates of the signal corresponding to the first stage.
Abstract:
In a spatial modulation multiple-input-multiple-output (SM-MIMO) wireless communication system, multiple transmitting antennae and multiple receiving antennae may be utilized to respectively transmit and receive wireless signals for the communication. A selection of a combination of the multiple transmitting antennae may be configured to represent one or more binary digits in a signal sequence. The signal sequence may be produced at the receiving end without the knowledge of the selection of the combination of the multiple transmitting antennae.
Abstract:
An apparatus and associated methodology providing read channel circuitry having a signal equalizer that sends an equalized signal to a bit detector. The read channel circuitry is capable of sampling values of the equalized signal to identify a bit transition from among a predefined plurality of different bit transitions. The apparatus may have channel optimization (CO) logic that, based on the input signal and the sampling of the equalized signal, defines first values for a programmable parameter of the bit detector that substantially maximizes vector separations among vectors of waveform target samples corresponding to the predefined plurality of different bit transitions, while the CO logic also defines second values for a programmable parameter of the equalizer that substantially minimizes the mean squared separation of the equalized signal segment for each bit transition from the waveform target corresponding to that bit transition.
Abstract:
The present invention is directed to a MIMO equalization system and method, optimized for baud rate clock recovery in coherent symbol-spaced DP-QPSK Metro systems. According to this method, the Mueller & Muller timing function is extended to cope with controlled ISI induced signals, while decoupling between MIMO equalization and clock recovery loops, using a midpoint output of the equalizer for timing estimation, instead of its final output. At least a portion of controlled Inter-Symbol Interference (ISI) is kept intact and the controlled ISI is compensated by an MLSE, right after carrier timing synchronization.
Abstract:
Disclosed herein is a method for generating transmitted signals. The method includes selecting a reference resource element (RE) from an RE group including a plurality of REs, generating a common precoder to be shared among the plurality of REs of the RE group based on channel information of the reference RE, generating primary signals, which are precoding signals of the plurality of REs, by applying the common precoder to transmitted data for the plurality of REs, and generating secondary signals by compensating for the primary signals of the REs except for the reference RE among the plurality of REs using channel information of the REs.
Abstract:
An equalizer for equalizing a composite signal originating from a given number of simultaneous data streams able to be received over a communication channel, on a given number of antennas, at one or more radio units, in a wireless communication system. The equalizer performs matrix operations when the number of receiving antennas associated with the composite signal is lower than the number of antennas supported by the equalizer. The channel matrix and the signal and interference covariance matrices are manipulated. The antenna dimension is increased, padding is then added and the transmitted signal vector is finally determined based on the altered matrices.A baseband processing unit, a method and a computer program are also claimed.