Abstract:
The electric leakage protection device (feed control device includes an electric leakage detector, an electric leakage protector, and a self leakage generator. The electric leakage detector outputs an electric leakage detection signal when a current leaked from a main circuit exceeds a threshold value. The electric leakage protector opens a contact device interposed in the main circuit when receiving the electric leakage detection signal. The self leakage generator includes; a first short circuit having a first electric resistance component and a first switch component electrically connected in series with each other, and a second short circuit having a second electric resistance component and a second switch component electrically connected in series with each other. The first short circuit and the second short circuit are electrically connected in parallel with each other with regard to a pair of power supply paths constituting the main circuit.
Abstract:
A method for detecting a fault of an actuator of a recloser, the actuator controlled by a coil to move between a first position and a second position, the method including: controlling the coil to move the actuator from the first position to the second position; monitoring, for a period of time, either or both of a current flowing through the coil and a voltage across the coil when the actuator is moving from the first position to the second position; and detecting the fault when the monitored current or the monitored voltage fails a predetermined condition.
Abstract:
An arc fault circuit interrupter is disclosed. This arc fault circuit interrupter can include any one or more of three different sensors such as a high frequency sensor, and any one of lower frequency sensors such as a current sensor or a differential sensor. The arc fault circuit interrupter can be configured as an in line arc fault circuit interrupter installed in a wall box. In addition, the arc fault circuit interrupter can include a processor configured to determine any one of a series arc fault, or a parallel arc fault.
Abstract:
A portable electrical energy power node is provided. The power node includes first and second input power terminals and first and second output power terminals. The input power terminals are adapted for receiving a source of electrical power and the output terminals are adopted for connecting to a load. A first power line connects the first input terminal to the first output terminal, a second power line connects the second input terminal to the input side of a circuit interrupter and a third power line connects the output side of the circuit interrupter to the second output terminal. The circuit interrupter selectively interrupts the connection between the second input terminal and the second output terminal in accordance with a fault sensor and a control unit.
Abstract:
A monitoring system is applied to an electrical system, which includes a DC power source and an electrical apparatus that is connected to the DC power source by a pair of electric power leads incorporating respective switches. To detect leakage current from the DC power source, a low-frequency AC signal is applied via a large-capacitance capacitor to a specific connection position, between a first terminal of the DC power source and the corresponding switch, and the resultant voltage of that signal is measured. To detect a short-circuit failure of one or both of the switches, a high-frequency AC signal is applied via a low-capacitance capacitor to the specific connection position, and the resultant signal voltage is measured. Judgement as to occurrence of leakage current and/or short-circuit failure is based on the measured signal voltage values.
Abstract:
A ground fault circuit interrupter (GFCI) including separable contacts, a ground fault detection circuit structured to detect a ground fault based and to output a trip signal in response to detecting the ground fault, a trip circuit structured to trip open the separable contacts in response to the trip signal, a test button structured to be actuated by a user, a test unit structured to sequentially perform a GFCI self-test sequence and a ground fault test sequence in response to actuation of the test button, wherein the test unit is structured to determine whether the GFCI passed the GFCI self-test sequence and to output in an alarm signal in response to determining that the GFCI failed the GFCI self-test sequence, and an indicator structured to receive the alarm signal and to provide a visual or audible indication in response to receiving the alarm signal.
Abstract:
A device for protecting a medium or high voltage electrical network is provided, including a base part connected to means for measuring values representative of the electrical network and to a trip circuit of the electrical network, an active part that includes means for analogue-digital conversion of the values representative of the electrical network and which is mechanically and electrically connected to the base part in a first position referred to as the normal position, and a removable test part that is mechanically and electrically connected to the active part in a second position referred to as the test position. The test part includes means for mechanically and electrically connecting to the base part such that, in the test position, external terminals of the test part are connected to the trip circuit through the base part.
Abstract:
A self-test module of an electronic circuit breaker includes a power supply assembly with a rechargeable battery, a self-test enablement assembly, an induced power supply assembly, a boost power supply, and a micro control unit (MCU). The self-test enablement assembly is connected to the rechargeable battery and includes an enablement button, a capacitor and a first power chip connected in series. The induced power supply assembly includes a buck chip. The boost power supply includes a second power chip and a boost chip connected in series. The MCU includes a plurality of pins that are connected to the first and second power chips, the buck chip, and the boost chip. The self-test module has two working modes; the electronic circuit breaker may be provided with or without a load current. The MCU operates the self-test procedure, indicates the self-test status, and maintains the indication for a period of time.
Abstract:
A residual current circuit breaker has a summation current transformer that has primary windings as well as a secondary and a tertiary winding, the secondary winding forming a circuit with an electronic trigger unit that is independent of the network voltage, and the tertiary winding forming a circuit with an electronic trigger unit that is dependent on the network voltage. The residual current circuit breaker may have an electronic control unit designed to actuate a switch upon predefinable actuation by the network voltage-dependent electronic trigger unit, and the switch, when in the actuated state, may interrupt contact of the secondary winding with the network voltage-independent electronic trigger unit and establishes contact of the tertiary winding with the network voltage-dependent electronic trigger unit.
Abstract:
A method of monitoring a device which is equipped with a microprocessor, which method includes computation in the microprocessor on input data; performing a logic operation by logic gates in an external monitoring device on the same input data; comparing the results of the computation and the logic operation, and deriving from the compared results a diagnostic of the microprocessor, and optionally then switching the microprocessor to a backup safety mode. A device for carrying out such monitoring is also described.