摘要:
In a nitride-based semiconductor device, an undoped gallium nitride (GaN) layer is formed on an aluminum gallium nitride (AlGaN) layer, and a silicon carbon nitride (SixC1-xN) functional layer is formed on the undoped GaN layer.
摘要:
Group III (Al, Ga, In)N single crystals, articles and films useful for producing optoelectronic devices (such as light emitting diodes (LEDs), laser diodes (LDs) and photodetectors) and electronic devices (such as high electron mobility transistors (HEMTs)) composed of III-V nitride compounds, and methods for fabricating such crystals, articles and films.
摘要:
There is provided a semiconductor device including corundum crystal films of good quality. There is provided a semiconductor device including a base substrate, a semiconductor layer, and an insulating film each having a corundum crystal structure. Materials having a corundum crystal structure include many types of oxide films capable of functioning as an insulating film. Since all the base substrate, the semiconductor layer, and the insulating film have a corundum crystal structure, it is possible to achieve a semiconductor layer and an insulating film of good quality on the base substrate.
摘要:
A method for making light emitting diode, the method includes the following steps. A substrate having an epitaxial growth surface is provided. A carbon nanotube layer is suspended above the epitaxial growth surface. A first semiconductor layer, an active layer and a second semiconductor layer are grown on the epitaxial growth surface in that order. A third semiconductor layer is formed on a surface of the second semiconductor layer, wherein the third semiconductor layer includes a plurality of spaced protrusions. A portion of the first semiconductor layer is exposed by etching a portion of the third semiconductor layer, the second semiconductor layer, and the active layer. A first electrode is formed to electrically connected to the first semiconductor layer and a second electrode is formed to electrically connected to the second semiconductor layer.
摘要:
An optoelectronic device comprises a substrate; a converting structure for converting energy between light and electric current over the substrate; and a semiconductor buffer layer combination between the substrate and the converting structure, the semiconductor buffer layer combination comprising multiple first semiconductor layers and multiple second semiconductor layers alternately stacked, wherein each of the multiple first semiconductor layers comprises a first element, each of the multiple second semiconductor layers comprises a second element different from the first element, and the composition ratio of the first element gradually increases or decreases with an increase of the distance between the first semiconductor layers and the substrate.
摘要:
In some aspects, methods of forming a metal sulfide thin film are provided. According to some methods, a metal sulfide thin film is deposited on a substrate in a reaction space in a cyclical process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase sulfur reactant. In some aspects, methods of forming a three-dimensional architecture on a substrate surface are provided. In some embodiments, the method includes forming a metal sulfide thin film on the substrate surface and forming a capping layer over the metal sulfide thin film. The substrate surface may comprise a high-mobility channel.
摘要:
A light emitting diode is disclosed. The disclosed light emitting diode includes a light emitting structure including a first-conductivity-type semiconductor layer, an active layer, and a second-conductivity-type semiconductor layer. The first-conductivity-type semiconductor layer, active layer, and second-conductivity-type semiconductor layer are disposed to be adjacent to one another in a same direction. The active layer includes well and barrier layers alternately stacked at least one time. The well layer has a narrower energy bandgap than the barrier layer. The light emitting diode also includes a mask layer disposed in the first-conductivity-type semiconductor layer, a first electrode disposed on the first-conductivity-type semiconductor layer, and a second electrode disposed on the second-conductivity-type semiconductor layer. The first-conductivity-type semiconductor layer is formed with at least one recess portion.
摘要:
A facile method to produce covalently bonded graphene coating on various solid substrates is disclosed in the present invention. According to one embodiment, a combination of graphite, graphene oxide or graphene and silicon compound with or without a metal containing compound in an air free environment is processed at high temperatures to produce covalent carbide bonding among graphene layers and between graphene and substrate surface.
摘要:
An epitaxial structure is provided. The epitaxial structure comprises a substrate, a carbon nanotube layer and an epitaxial layer stacked in that order. The substrate has an epitaxial growth surface and defines a plurality of first grooves and first bulges on the epitaxial growth surface. The carbon nanotube layer covers the epitaxial growth surface, wherein a first part of the carbon nanotube layer is attached on top surface of the first bulges, and a second part of the carbon nanotube layer is attached on bottom surface and side surface of the first grooves. The epitaxial layer is formed on the epitaxial growth surface, and the carbon nanotube layer is sandwiched between the epitaxial layer and the substrate.
摘要:
The invention generally related to a method for preparing a layer of graphene directly on the surface of a substrate, such as a semiconductor substrate. The layer of graphene may be formed in direct contact with the surface of the substrate, or an intervening layer of a material may be formed between the substrate surface and the graphene layer.