Abstract:
A multi-layer laterally-confined dispersion-engineered optical waveguide may include one multi-layer reflector stack for guiding an optical mode along a surface thereof, or may include two multi-layer reflector stacks with a core therebetween for guiding an optical mode along the core. Dispersive properties of such multi-layer waveguides enable modal-index-matching between low-index optical fibers and/or waveguides and high-index integrated optical components and efficient transfer of optical signal power therebetween. Integrated optical devices incorporating such multi-layer waveguides may therefore exhibit low (
Abstract:
A multi-layer laterally-confined dispersion-engineered optical waveguide may include one multi-layer reflector stack for guiding an optical mode along a surface thereof, or may include two multi-layer reflector stacks with a core therebetween for guiding an optical mode along the core. Dispersive properties of such multi-layer waveguides enable modal-index-matching between low-index optical fibers and/or waveguides and high-index integrated optical components and efficient transfer of optical signal power therebetween. Integrated optical devices incorporating such multi-layer waveguides may therefore exhibit low (
Abstract:
In the monolithically integrated photonic circuit, light travels through multiple quantum well channel waveguides and is coupled into and out of the devices that reside in common on a single semiconductor substrate. Each device, which is co-planar with any other device on the substrate, is comprised of a quantum well channel waveguide of a pre-determined length and an electrical contact pad mounted on the waveguide that facilitates the application of electric field to the device. The function of any particular device as an optical source, an optical modulator or a photo-detector is determined by the bias mode of electric field applied to that particular device. The circuit is comprised of multiple rows of such devices. Each of these rows contains at least three devices which function as an optical source, an optical modulator and a photo-detector, respectively, and are separated from each other by electrical isolation gaps.
Abstract:
An optical semiconductor device of the present invention is provided with a core layer having a quantum well layer in that film thickness gets thinner from a inner region to an end portion in an optical waveguide region.