Abstract:
A golf green reading device has a lens with a reference line that is illuminated when the reference line is in a horizontal or vertical orientation. The reference line is illuminated by an electrical circuit secured within a housing having a power source, a light source, and a level switch. The user holds the device in a horizontal or vertical orientation to read the slope of a golf green relative to the reference line and determine the correct line to putt the golf ball.
Abstract:
A tilt sensor apparatus (36) includes one or more tilt sensors (42). Each tilt sensor (42) includes a conductive element (64) entrapped within an opening (46) formed through a middle planar substrate (38). The opening is surrounded by an opening wall (52) which is entirely covered by a conductor (54). A conductive star pattern (100′) is formed on a top planar substrate (40), and a conductive star pattern (100″) is formed on a bottom planar substrate (44). The star patterns (100) are positioned at opposing ends of the opening (46). The conductive element moves within the opening (46) as the apparatus (36) is tilted. An interrupt-driven control circuit (124) is configured to indicate a change in orientation only when a short is first detected across a contact pair (54/56, 54/60) that corresponds to an orientation opposite to a currently-indicated orientation.
Abstract:
The invention concerns an inertial sensor or an actuator based on diamagnetic levitation, said inertial sensor or actuator comprising support means serving as main support body for an inertial sensor or for an actuator, a two dimensional array of permanent magnets and a diamagnetic element facing the said array characterized in that said diamagnetic material constitutes the inertial mass or the moving part of the actuator.
Abstract:
A tilt detector and tilt detecting method for the same are disclosed. The tilt detector includes a light-detecting unit and a light-permeable unit. The light-detecting unit includes a body, a window formed on the body, and a signal port device formed on the body. The window detects the position of a moving facula, and the signal port device outputs the facula location signal. The light-permeable unit mounted in the window and includes a chamber, an opaque fluid filled with the chamber, and a light-permeable substance formed on the opaque fluid. The window detects a facula by the light-detecting unit when a beam is emitted to the window via the light-permeable substance. Therefore, the level of a subject is detected by observing the light-permeable substance directly, and obtains the precise level by the signal outputted from the signal port device.
Abstract:
An adherent device comprises an adhesive patch with at least two electrodes and an accelerometer. The accelerometer can be used to determine an orientation of the at least two measurement electrodes on a patient. By determining the orientation of the electrodes of the patch on the patient, physiologic measurements with the at least two electrodes can be adjusted and/or corrected in response to the orientation of the patch on the patient. The adherent patch and/or electrodes can be replaced with a second adherent patch and/or electrodes, and the orientation of the second adherent patch and/or electrodes can be determined with the accelerometer or a second accelerometer. The determined orientation of the second patch and/or electrodes on the patient can be used to correct measurements made with the second adherent patch and/or electrodes.
Abstract:
An inclined detector comprises: a detector body provided with an interior containing space including a lower alcove which is funnel-shaped; a pair of detection components including a transmitting component and a receiving component, wherein, the transmitting component is used to transmit a first signal which goes through the said containing space of the detector body, and the receiving component is used to receive the first signal transmitted by the transmitting component; and a ball disposed in the containing space of the detector body, wherein the ball stays at the bottom center of the lower alcove of the containing space when in a static state. By such arrangements, when the detector body is inclined to make the ball leave the former place where the ball is when in a static state, the receiving component will transmit a second signal for controlling after receiving the first signal transmitted by the transmitting component.
Abstract:
A multi-axis bubble vial device includes a bubble vial having a vial body defining a fluid chamber with a curved upper surface, and a quantity of fluid partially filling the chamber. The fluid defines a bubble in the upper portion of the chamber that moves along the upper surface in dependence upon the orientation of the vial. A centrally positioned light source above the bubble vial directs light into the chamber, and four light sensors, positioned above the bubble vial and arranged circumferentially around the centrally positioned light source, detect the reflection of light from a reflector beneath the fluid chamber. A first pair of the sensors is positioned on opposite sides of the light source along a first axis, and a second pair of the sensors is positioned on opposite sides of the light source along a second axis. The second axis is substantially perpendicular to the first axis.
Abstract:
The present invention discloses a method for detecting an orientation of a device (1) with respect to a direction of an acceleration force and a device (1) comprising an optical device (10) comprising a first liquid (A) and a second liquid (B), said liquids (A; B) being immiscible, having different refractive indices and different densities and being in contact with each other via an interface (14), a sensor (20) comprising a grid of pixels (22), the sensor (20) being arranged to sense an image captured by the optical device (10) on a subset (24, 24′) of the grid of pixels (22); and calculating means (30) for calculating an orientation of the device (1) with respect to a direction of an acceleration force from the position of the subset (24, 24) on the grid (22). Consequently, the orientation of the device (1) with respect to the direction of an acceleration force such as gravity can be obtained without mechanically moving parts.
Abstract:
Electronic devices are provided to measure the angle between two arbitrary surfaces, using the local direction of gravity as an absolute direction reference. One case is an electronic device to measure the angle between the keel of a rowing shell and the oarlock pin.
Abstract:
The present invention discloses a sensing device, wherein a hemispherical container containing a liquid dielectric, and the hemispherical container has more than two pairs of electrodes, and the liquid dielectric can trigger the conduction states of the electrodes. A corrosion-resistant material envelops the container. A precision valve is arranged in the container and used to adjust the level of the liquid dielectric and the sensitivity of the sensing device. A buffer necking part is also arranged in the container and used to prevent from non-expected vibration-induced contact between the electrodes and the liquid dielectric. A leakage-proof detection device envelops the hemispherical container, the liquid dielectric, the precision valve, and the buffer necking part and functions to prevent from the leakage of the liquid dielectric. Thus, the present invention can provide an adjustable multi-directional tilt-sensing device for level control.