Abstract:
A chiller coil system for an air intake system of a combustion gas turbine system includes an array of chiller cooler modules. The chiller coil system includes at least one first chiller coil and at least one second chiller coil. The first chiller coil has a first overall thermal conductance. The second chiller coil has a second overall thermal conductance greater than the first overall thermal conductance.
Abstract:
An in-vehicle cooling device includes: a header to be mounted so as to be adjacent to a side surface of a transformer mounted on a back side of a bottom portion of a vehicle, the header having a vertical surface along a traveling direction and a direction orthogonal to the travelling direction; a vertical-direction installed cooling pipe having both ends fixed to the header and being installed on a vertical plane orthogonal to the traveling direction; and a traveling-direction installed cooling pipe having both ends fixed to the header and being installed on a travel plane that is parallel to a horizontal plane, the vertical-direction installed cooling pipe and the traveling-direction installed cooling pipe being installed to overlap with each other in a direction orthogonal to the header.
Abstract:
A gas turbulator is inserted in a tube of a heat exchanger to increase turbulence of gases passing through the tubes of the heat exchanger. The turbulator consists of a longitudinal metal strip running the length of the heat exchanger tube. Longitudinal tabs are punched from the interior of the metal strip. The tabs protrude in opposite directions from the plane of the longitudinal strip to form a series of slanted flip up tabs and flip down tabs in a side elevation view of the turbulator.
Abstract:
Provided is a heat exchanger. The heat exchanger may include a plurality first through third heat exchange pipes connected between a first side part and a second side part, each of which comprising a path of moving heat-exchanger fluid inside; first blisters formed on the outer side surfaces of the first side part and the second side part, thereby connecting gaps between each neighboring first heat exchange pipe; second blisters formed on the outer side surface of the first side part, thereby connecting the first heat exchange pipes with the second heat exchange pipes or the second heat exchange pipes with the third second heat exchange pipes; and third blisters formed on the outer side surface of the second side part, thereby connecting neighboring second heat exchange pipes or neighboring third heat exchange pipes. The second heat exchange pipes may be spaced apart from the first heat exchange pipes and formed above the first heat exchange pipes and the third heat exchange pipes may be spaced apart from the second heat exchange pipes and formed above the second heat exchange pipes.
Abstract:
A unit cell for a lattice structure includes eight unit trusses disposed at vertices of the unit cell. A single unit truss is disposed at a centroid of the unit cell. Each of the nine unit trusses includes fourteen struts. Lattice structures are commonly used to connect various loads within a volume of space. Most such structures, however, have a rigid definition for their topology, and are unable to conform to shape or load directions. Additionally, conventional lattice structures are homogeneous, having dimensions and properties that are consistent throughout. These constraints, generally imposed for ease of manufacturing and assembly, prevent the development of highly robust and efficient structures, and limit the potential for multi-functional applications.
Abstract:
A micro gas turbine system (1) having an annular recuperator (9) for heat transfer from an exhaust gas flow (13) to an intake air flow (8). The exhaust gas flow (13) flows through radial inlets (18) into the recuperator (9) and/or out of the recuperator (9) through radial outlets (19).
Abstract:
Unitary heat exchangers having integrally-formed compliant heat exchanger tubes and heat exchange systems including the same are provided. The unitary heat exchanger comprises an inlet plenum and an outlet plenum and a plurality of integrally-formed compliant heat exchanger tubes. The plurality of integrally-formed compliant heat exchanger tubes extend between and are integral with the inlet and outlet plenums to define a heat exchanger first flow passage. Each integrally-formed compliant heat exchanger tube comprises a tubular member and a plurality of integral heat transfer fins extend radially outwardly from at least one portion of the tubular member. The tubular member has a proximal tube end and a distal tube end and comprises a tubular wall having an outer wall surface and an inner wall surface.
Abstract:
An aircraft micro-lattice cross-flow heat exchanger and methods are presented. A first aircraft fluid source inlet provides a first fluid from a first aircraft system, and a second aircraft fluid source inlet provides a second fluid from a second aircraft system. A structural body supports aviation induced structural loads and exchanges heat between the first fluid and the second fluid. The structural body comprises hollow channels forming two interpenetrating fluidically isolated volumes that flow the first fluid within the hollow channels and flow the second fluid external to the hollow channels isolated from the first fluid. The hollow channels comprise a hollow three-dimensional micro-truss comprising hollow truss elements extending along at least three directions, and hollow nodes interpenetrated by the hollow truss elements.
Abstract:
A vaporization method includes a preparing step of preparing a vaporizing tube that covers at least a part of a heat exchange unit for cold energy of a Stirling engine and is capable of forming an ascending flow of the liquid flowing from a bottom to a top of the heat exchange unit for cold energy, and a vaporizing step of feeding the liquid in the vaporizing tube to thereby form the ascending flow and bringing the liquid into contact with the Stirling engine to vaporize the liquid. In the preparing step, a flowing direction of the ascending flow is adjusted to suppress occurrence of separated flows of the liquid and gas in the vaporizing tube. In the vaporizing step, the liquid is fed at a flow velocity at which a gas-liquid two-phase flow in which the liquid and the gas are mixed is formed in the vaporizing tube.
Abstract:
The present invention concerns an isothermal reactor (1) for carrying out exothermal or endothermal heterogeneous reactions comprising: —a substantially cylindrical outer shell (2) with longitudinal axis (X), —at least one catalytic bed (6) extending in the shell (2) and comprising opposite perforated side walls (7, 8) respectively for the inlet of a gaseous flow of reactants and for the outlet of a gaseous flow comprising reaction products, and —a heat exchange unit (12) immersed in said at least one catalytic bed (6) and crossed by a heat exchange fluid, characterised in that said heat exchange unit (12) comprises at least one succession of heat exchangers (13) arranged substantially parallel to each other and substantially parallel to the direction in which said at least one catalytic bed (6) is crossed by said gaseous flow of reactants.