Abstract:
An inorganic mass spectrometer capable of measuring a relevant and large or the full mass spectral range simultaneously may include a suitable ion source (e.g., an ICP mass spectrometer with an ICP ion source), an ion transfer region, ion optics to separate ions out of a plasma beam, a Mattauch-Herzog type mass spectrometer with a set of charged particle beam optics to condition the ion beam before an entrance slit, and a solid state multi-channel detector substantially separated from ground potential and separated from the potential of the magnet.
Abstract:
The present invention provides for a structure comprising a plurality of emitters, wherein a first nozzle of a first emitter and a second nozzle of a second emitter emit in two directions that are not or essentially not in the same direction; wherein the walls of the nozzles and the emitters form a monolithic whole. The present invention also provides for a structure comprising an emitter with a sharpened end from which the emitter emits; wherein the emitters forms a monolithic whole. The present invention also provides for a fully integrated separation of proteins and small molecules on a silicon chip before the electrospray mass spectrometry analysis.
Abstract:
In order to provide an analysis method that is capable of determining a glycan structure with high detection sensitivity, a method of the present invention includes the steps of: carrying out triple quadrupole mass spectrometry at various values of CID energy; creating an energy-resolved profile including yield curves representing relationships between (i) a value of the CID energy and (ii) measured amounts of specific types of product ions; preparing a reference profile, and identifying a glycan structure of a test material by comparing the energy-resolved profile with the reference profile.
Abstract:
A method includes directing ions from an atmospheric pressure ion source to a first ion guide; directing ions in the first ion guide to a second ion guide, the second ion guide being a multipole ion guide extending along an axis; periodically directing ions along the axis; receiving at least some of the ions in a time-of-flight analyzer; accelerating the ions in the time-of-flight mass analyzer orthogonal to the axis; and detecting the accelerated ions.
Abstract:
A method for isotope measurement of charged species contained in a solution to be analyzed, particularly charged species having an isobaric interference, has the following consecutive steps: a) in the capillary of a capillary electrophoresis device, the solution to be analyzed is inserted contiguously between a terminating electrolyte and a leading electrolyte that, respectively, are placed after the inlet and before the outlet of the capillary and contain ions of the same charge but with mobility inferior and superior to those of said species; b) separating the species by using the capillary electrophoresis device according to the isotachophoresis mode; then c) in the continuity of the preceding step, performing an isotope measurement of the species detected in the form of a substantially constant amplitude signal by using an inductively coupled plasma mass spectrometer (ICPMS) connected by direct coupling with the capillary electrophoresis device.