摘要:
The invention provides dental devices (including implants, abutments, bridges, screws, and orthodontic appliances) that are fabricated from low modulus, biocompatible, non-toxic Ti-Nb-Zr alloys. The dental implants provide a biomaterial-to-bone interface that results in significant attachment between implant and bone. The implants may be supplied with a porous coating or macro-texture to further promote bone attachment and stabilization of the implant in the jaw bone. Other orthodontic appliances such as brackets and wires have improved elastic toughness and corrosion resistance so that they provide superior performance and corrosion characteristics.
摘要:
Biocompatible medical implants from a high strength, low modulus, hot worked titanium alloy containing titanium, about 10-20 wt. % or 35 to about 50 wt. % niobium and up to 20 wt. % zirconium. In particular, the titanium implants have a modulus of elasticity closer to that of bone than other typically used metal alloys and does not include any elements which have been shown or suggested as having short or long term potential adverse effects from a standpoint of biocompatibility. To fabricate the alloy, it is necessary to heat to above the .beta.-transus temperature (or to a temperature in a range from 100.degree. C. below and up to the .beta.-transus), hot work the alloy, rapidly cool to below the .beta.-transus, and age the cooled alloy for a period of time to develop its strength while maintaining its low modulus (less than about 90 GPa). The alloy is suitable for a range of uses where the properties of low modulus, high strength and corrosion resistance are desirable.
摘要:
Cardiovascular and other medical implants fabricated from low-modulus Ti-Nb-Zr alloys to provide enhanced biocompatibility and hemocompatibility. The cardiovascular implants may be surface hardened by oxygen or nitrogen diffusion or by coating with a tightly adherent, hard, wear-resistant, hemocompatible ceramic coating. The cardiovascular implants include heart valves, total artificial heart implants, ventricular assist devices, vascular grafts, stents, electrical signal carrying devices such as pacemaker and neurological leads, defibrillator leads, and the like. It is contemplated that the Ti-Nb-Zr alloy can be substituted as a fabrication material for any cardiovascular implant that either comes into contact with blood thereby demanding high levels of hemocompatibility, or that is subject to microfretting, corrosion, or other wear and so that a low modulus metal with a corrosion-resistant, hardened surface would be desirable.
摘要:
A biocompatible titanium alloy with low elastic modulus containing titanium, about 10-20 wt. % or 35 to about 50 wt. % niobium and up to 20 wt. % zirconium useful for fabricating of orthopedic implants. This invention relates generally to high strength, biocompatible alloys suitable for use as a material for a medical prosthetic implant and, in particular, a titanium alloy which has a relatively low modulus of elasticity (e.g. closer to that of bone than other typically-used metal alloys) and does not include any elements which have been shown or suggested as having short term or long term potential adverse effect from a standpoint or biocompatibility.