Abstract:
The present invention provides methods to enhance production of desired products and increase the growth rate of a bacterial strain by inactivating an endogenous arcA and optionally overexpressing a ppc gene.
Abstract:
The present invention concerns multimeric oxidoreductase complexes which function in the enzymatic conversion of a carbon substrate, said complexes having a dehydrogenase subunit and a cytochrome C subunit. The invention further relates to polynucleotides coding for the multimeric complexes and methods of use thereof.
Abstract:
Recombinant organisms are provided comprising genes encoding a glycerol-3-phosphate dehydrogenase and/or a glycerol-3-phosphatase activity useful for the production of glycerol from a variety of carbon substrates. The organisms further contain disruptions in the endogenous genes encoding proteins having glycerol kinase and glycerol dehydrogenase activities.
Abstract:
The present invention relates to a method of altering bacterial host cells to accumulate 2-keto-D-gluconic acid (2-KDG) by inactivating an endogenous membrane bound 2-keto-D-gluconate dehydrogenase (2-KDGDH), which prior to inactivation catalyzed the conversion of 2-KDG to 2,5-diketogluconate (2,5-DKG).
Abstract:
The invention provides isolated nucleic acid molecules encoding polypeptides having 2,5-DKG permease activity, and oligonucleotides therefrom. The isolated nucleic acid molecules can be expressed in appropriate bacterial cells to enhance the production of 2-KLG, which can subsequently be converted to ascorbic acid. Further provided are isolated polypeptides having 2,5-DKG permease acitivity, immunogenic peptides therefrom, and antibodies specific therefor. The invention also provides methods of identifying novel 2,5-DKG permeases.
Abstract:
Recombinant organisms are provided comprising genes encoding aquacobalamin reductase, cob(II)alamin reductase, cob(I)alamin adenosyltransferase, glycerol dehydratase and 1,3-propanediol oxidoreductase activities useful for the production of 1,3-propanediol from a variety of carbon substrates. More specifically the following nucleotide sequences are provided: btuR, encoding the E. coli cob(I)alamin adenosyltransferase enzyme; cobA, encoding the Salmonella typhimurium cob(I)alamin adenosyltransferase enzyme; cobO, encoding the Pseudomonas denitrificans cob(I)alamin adenosyltransferase enzyme; dhaB1, encoding the α subunit of the Klebsiella glycerol dehydratase enzyme; dhaB2, encoding the β subunit of the Klebsiella glycerol dehydratase enzyme; dhaB3, encoding the γ subunit of the Klebsiella glycerol dehydratase enzyme; dhaT, encoding Klebsiella oxidoreductase enzyme; the yciK gene isolated from E. coli; the glucose isomerase promoter sequence from Streptomyces; and the N-terminal amino acid sequence for cob(II)alamin reductase from Pseudomonas denitrificans.
Abstract:
The invention provides methods and host cells for the production of ascorbic acid intermediates. The invention also provides host cells having a modification in a polynucleotide that uncouples the catabolic pathway from the oxidative pathway by deleting the encoding for an endogenous enzymatic activity that phosphorylates D-glucose at its 6th carbon and/or a polynucleotide that has deleted the encoding for endogenous enzymatic activity that phosphorylates D-gluconate at its 6th carbon. Such host cells are used for the production of products, such as, ascorbic acid intermediates. Nucleic acid and amino acid sequences with inactivated enzymatic activity which phosphorylates D-glucose at its 6th carbon and inactivated enzymatic activity which phosphorylates D-gluconate at its 6th carbon are provided.
Abstract:
This invention describes methods for enhancing carbon flow into a pathway of a host cell to enhance the biosynthetic production of compounds therefrom, the host cells being selected based on being phenotypically Pts−/glucose+. Such host cells are capable of transporting glucose without consuming PEP, resulting in conservation of PEP which can be re-directed into the pathway in order to enhance the production of desired compounds along the pathway. Pts−/glucose+ mutants have been shown to be advantageous for the enhanced production of the aromatic amino acids.
Abstract:
The present invention relates to engineering metabolic pathways in bacterial host cells which results in enhanced carbon flow for the production of ascorbic acid (ASA) intermediates. In particular, the invention relates to increasing the production of ASA intermediates in bacterial cells by enhancing the availability of gluconate resulting from the inactivation of endogenous gluconate transporter genes.
Abstract:
The present invention relates to a method of altering bacterial host cells to accumulate 2-keto-D-gluconic acid (2-KDG) by inactivating an endogenous membrane bound 2-keto-D-gluconate dehydrogenase (2-KDGDH), which prior to inactivation catalyzed the conversion of 2-KDG to 2,5-diketogluconate (2,5-DKG).