Abstract:
A display apparatus includes: a substrate including a display area and a peripheral area around the display area, the substrate having a bent portion; a plurality of display elements in the display area; and a thin film encapsulation layer over the plurality of display elements and including a first encapsulation layer, a second encapsulation layer over the first encapsulation layer, and an organic encapsulation layer between the first encapsulation layer and the second encapsulation layer, wherein the second encapsulation layer includes a plurality of inorganic thin layers and a plurality of organic thin layers alternately arranged, and a thickness of the second encapsulation layer is equal to or less than a thickness of the first encapsulation layer.
Abstract:
A display apparatus includes a substrate, a display layer disposed on the substrate, and a thin film encapsulation layer that covers the display layer. The display layer includes a plurality of emission portions and a non-emission portion around each of the plurality of emission portions. The thin film encapsulation layer includes a first organic film that covers the emission portions, a second organic film that covers the non-emission portion and is spaced apart from the first organic film, and a first inorganic film interposed between the first organic film and the second organic film.
Abstract:
A display device which is solid against an external impact is provided. The display device includes: a substrate; a thin film transistor arranged over the substrate; a first organic insulating layer arranged over the thin film transistor; and a first crack induction layer located inside the first organic insulating layer. The first crack induction layer may include an inorganic insulating material and may not overlap the thin film transistor as viewed from a direction perpendicular to the substrate.
Abstract:
A rollable display device includes a display module, a window member, a housing in which the display module and the window member are configured to be rolled up and stored, the housing having a slot through which the display module and the window member are configured to move in and out, a first rotary member disposed inside the housing configured to roll up the display module, and a second rotary member disposed inside the housing, spaced from the first rotary member, and configured to roll up the window member.
Abstract:
A manufacturing method of a flexible display apparatus includes forming a sacrificial layer on a carrier, forming a flexible substrate on the sacrificial layer, forming a display element on the flexible substrate, forming a first protection layer on the display element, forming, on the first protection layer, a second protection layer, which has an opposite sign of a thermal expansion coefficient to the first protection layer, separating the flexible substrate from the carrier by removing at least a portion of the sacrificial layer, and separating the first protection layer from the first protection layer.
Abstract:
An organic luminescence display device includes a substrate, a display unit on the substrate, a thin-film encapsulation layer sealing the display unit, and a stress-reducing layer on the thin-film encapsulation layer, wherein the stress-reducing layer includes an organic molecular film.
Abstract:
A flexible display device and method of manufacturing the same are disclosed. In one aspect, the flexible display device includes a flexible substrate including a first surface and a second surface opposite to the first surface and a display unit over the first surface of the flexible substrate. The flexible display device also includes a first barrier layer over the second surface of the flexible substrate and a first material layer between the first barrier layer and the flexible substrate, wherein the first material layer includes metal. The flexible display device can be more easily manufactured and resistant to external moisture permeation.
Abstract:
Provided is a method of manufacturing a polyimide substrate. An acid solution is provided to a glass substrate to remove a first cation included in the glass substrate, and a source solution including polyamic acid is provided to the glass substrate. Then, the polyamic acid is cured to form a polyimide substrate on the glass substrate, and the polyimide substrate is separated from the glass substrate.
Abstract:
Provided is a method of manufacturing a flexible display apparatus, the method including forming a sacrificial layer on a support substrate; forming a first material layer having a higher hydrogen concentration than the sacrificial layer on the sacrificial layer; forming a second material layer, preventing hydrogen diffusion from the first material layer to a flexible substrate, on the first material layer; forming the flexible substrate on the second material layer; forming a display layer on the flexible substrate; and irradiating a laser onto the support substrate to delaminate the sacrificial layer from the first material layer.
Abstract:
A flexible display and method of manufacturing the same are disclosed. In one aspect, the method includes forming a metal peroxide layer over a supporting substrate, forming a metal layer over the metal peroxide layer and forming a flexible substrate over the metal layer. The method also includes forming a display layer over the flexible substrate, irradiating the supporting substrate with laser light in a direction from the supporting substrate to the flexible substrate so as to form a metal oxide layer and separating the supporting substrate from the flexible substrate with the metal oxide layer as a boundary between the supporting substrate and the flexible substrate.