Abstract:
A core network (CN) may establish and distribute a quality of service (QoS) policy across a wireless communication system, e.g., by sending QoS policy information to an access network and to user equipment. The QoS policy may be implemented with respect to data network (DN) sessions as well as data sessions. For each DN session or data session, the QoS policy may be applied by explicit or implicit request, and data sessions may in some examples utilize pre-authorized QoS policies without the need to request the QoS. Other aspects, embodiments, and features may also be claimed and described.
Abstract:
In an aspect, a network supporting a number of client devices may include a network device that establishes a security context and generates a client device context. The client device context includes network state information that enables the network to communicate with the client device. The network device generates one or more encrypted network reachability contexts based on the client device context, and transmits the one or more encrypted network reachability contexts to a network entity. The one or more encrypted network reachability contexts enable the network device to reconstruct the context for the client device when the network device receives a message to be transmitted to the client device from the network entity. As a result, the network device can reduce an amount of the context for the client device maintained at the network device in order to support a greater number of client devices.
Abstract:
A device establishes flows associated with one or more applications using control plane signaling. A gateway device obtains a request for a network token during the control plane signaling. The gateway device derives the network token and sends it to the device and/or an access node during the control plane signaling. The device and/or access node obtain the network token, where the network token is associated with a first flow of the one or more flows, a first application of the one or more applications, and provisioned to the device or access node via the control plane signaling. The network token may be included in a packet sent in the user plane from the device. The network token may be verified at the access node and/or the gateway device using a cryptographic function and sent to its destination based on the results of the verification.
Abstract:
Some aspects of the disclosure provide various methods, apparatuses and computer-readable medium configured for wireless communication. A method operable at a user equipment (UE) may include transmitting a connection request message configured to request initial connection with a radio access network (RAN) node. The connection request message may include information configured to indicate a service profile of the UE. A method operable at the RAN node may include receiving the connection request message from the UE. The connection request message may include information configured to indicate the service profile of the UE. A method operable at a serving node may include receiving a connection request message from the RAN node. The connection request message may be configured to establish communication with the UE and may include a service profile corresponding to the UE.
Abstract:
Mobile devices may provide information in registration messages to improve registration and paging. A mobile device may, for example, indicate services or available connections, or both, in a registration message. Additionally, mobile devices may include context and/or mobility information. Information included in registration messages may be identified according to sets of active services, available connections, or network capabilities. In some examples, a policy or user indication may provide for certain information to be included in a registration message.
Abstract:
Methods, systems, and devices are described for Wireless Local Area Network (WLAN) offloading through radio access network rules. In one embodiment of a method of wireless communication, a mobile device may determine that Radio Access Network (RAN) assistance information is unavailable, the RAN assistance information including a first set of thresholds for switching a Packet Data Network (PDN) connection of the mobile device from a WLAN to a Wireless Wide Area Network (WWAN). The mobile device may further access a second set of thresholds based at least in part on the determining, and the mobile device may determine to switch the PDN connection from the WLAN to the WWAN based at least in part on the second set of thresholds.
Abstract:
Methods and apparatuses are provided for determining available uplink bandwidth as an achievable throughput for a link. An available link capacity of a link with a cell for a user equipment is estimated based on a communication quality measured in the cell. An available fraction of cell resources for the user equipment over the link is also estimated based at least in part on received assistance information. An available bandwidth of the cell is then estimated as an achievable throughput for the user equipment over the link as a function of the estimated available link capacity and the estimated available fraction of cell resources. Moreover, a network procedure can be performed based at least in part on comparing the achievable throughput to one or more thresholds.
Abstract:
Methods, systems, and devices for wireless communication are described. Generally, the described techniques provide for maximizing the potential of resources dedicated to aerial user equipment (UEs). In one example, a UE may receive signaling indicating that a cell supports communications exclusively with aerial UEs. The signaling may be used to bar non-aerial UEs from accessing the cell and reserve resources for communications with aerial UEs. In another example, a UE may receive signaling identifying one or more frequency bands dedicated to aerial UEs. The UE may then communicate on the one or more frequency bands. In yet another example, a UE may receive signaling indicating a set of aerial access categories supported by a cell. The signaling may be used to reserve resources for high-priority aerial UEs (e.g., aerial UEs used for law enforcement purposes).
Abstract:
A radio access network (RAN) node may transmit, to an access and mobility function (AMF) of a core network, a request associated with a location-based state of a user equipment (UE) served by the RAN node. The location-based state of the UE may be associated with whether the UE is flying or whether the UE is driving, or other location information of the UE. Accordingly, the RAN node may receive a message in response to the request. The RAN node may receive the message in response to the request from the AMF. Alternatively, the AMF may establish a connection between the RAN node and a location management function (LMF) of the core network such that the RAN node receives the message in response to the request from the LMF.
Abstract:
Methods, systems, and devices for wireless communications are described. In some systems, a user equipment (UE) (e.g., an unmanned aerial vehicle (UAV)) may receive an approved flight plan including approved flight plan sectors. The UE may also receive a query from a network node, the query including an indication of a subset of the plurality of approved flight plan sectors and a request for a plurality of waypoints of the UE within the indicated subset of the plurality of approved flight plan sectors. The UE may further determine, in response to receiving the query from the network node, a flight path including the plurality of waypoints of the UE for the indicated subset of the plurality of approved flight plan sectors based on the received approved flight plan, and the UE may transmit, to the network node, a flight declaration message including the waypoints of the UE.