Abstract:
A method and apparatus for video coding using template-based Intra prediction are disclosed. According to one method, where determining whether to apply the template-based Intra prediction or one or more parameters associated with the template-based Intra prediction depends on the current block size. According to yet another method, the quad-tree plus binary tree (QTBT) structure is used to partition an image or one or more areas of the current image into blocks. If the template-based Intra prediction is used for a current block and the current block is non-square, the width and height of the L-shaped reference pixel line are determined according to width and height of the current block. The L-shaped reference pixel line comprises a top reference pixel segment above the top template and a left reference pixel segment adjacent to a left side of the left template.
Abstract:
A reduced merge candidate signaling method is provided. When building a merge candidate list for a prediction unit (PU) of a block of pixels, a video codec skips or partially skips the construction of some sub-PU merge candidates. The video codec then performs simplified pruning operations on the merge candidate list based on the skipped or partially constructed sub-PU merge candidates. The pruned candidate list is then used to select a merge candidate to encode or decode the block of pixels.
Abstract:
Method and apparatus of video coding using generalized bi-prediction are disclosed. According to one method, the generalized bi-prediction is extended for Decoder-Side Motion Vector Refinement (DMVR), where unequal weighting factor pair is allowed to form the template of the current block or the final predictor. In another method, the generalized bi-prediction is extended to pattern-based MV derivation (PMVD), where unequal weighting factor pair is allowed to combined reference blocks pointed by motion vectors derived based on PMVD. In yet another method, the generalized bi-prediction is used for Merge mode. When the final Merge MVP selected corresponds to bi-prediction using an unequal weighting factor pair, a new weighting factor pair is derived using neighboring reconstructed pixels of the current block and corresponding motion compensated pixels. In yet another method, the size of a set of weighting factor pairs is dependent on block size.
Abstract:
A method and apparatus for coding video data using Inter prediction mode or Merge mode in a video coding system are disclosed, where the video data is configured into a Base Layer (BL) and an Enhancement Layer (EL), and the EL has higher spatial resolution or better video quality than the BL. In one embodiment, at least one information piece of motion information associated with one or more BL blocks in the BL is identified. A motion vector prediction (MVP) candidate list or a Merge candidate list for the selected block in the EL is then determined, where said at least one information piece associated with said one or more BL blocks in the BL is included in the MVP candidate list or the Merge candidate list. The input data associated with the selected block is coded or decoded using the MVP candidate list or the Merge candidate list.
Abstract:
A method and apparatus for deriving fine-grained motion compensated prediction of boundary pixels in a video coding system are disclosed. Embodiments of the present invention determine one or more neighboring coding units (CUs) adjacent to a current coding unit (CU). For each neighboring CU, motion-compensated prediction is derived for each neighboring CU using the MV of the neighboring CU. The pre-generated predictors at a bottom side or a right side of each neighboring CUs are derived and stored on a smallest CU (SCU) basis. The pre-generated predictors and the motion compensated predictor for a current boundary pixel are combined using weighting factors to form a final predictor for the current pixel.
Abstract:
A method and apparatus of inter-layer and the inter-view adaptive Intra prediction (IL-AIP and IV-AIP) for a video coding system are disclosed. The video data is configured into a Base Layer (BL) and an Enhancement Layer (EL) for the inter-layer video coding system, and the video data is configured into a Base View (BV) and an Enhancement View (EV) for the inter-view video coding system. The adaptive Intra predictor for the to-be-processed block in the EL or the EV is derived based on the BL or the BV. For inter-layer and inter-view adaptive LM Intra prediction, the LM adaptive Intra predictor for the to-be-processed chroma block in the EL or the EV is derived based on the BL or the BV.
Abstract:
A method and apparatus for deriving fine-grained motion compensated prediction of boundary pixels in a video coding system are disclosed. Embodiments of the present invention determine one or more neighboring coding units (CUs) adjacent to a current coding unit (CU). For each neighboring CU, motion-compensated prediction is derived for each neighboring CU using the MV of the neighboring CU. The pre-generated predictors at a bottom side or a right side of each neighboring CUs are derived and stored on a smallest CU (SCU) basis. The pre-generated predictors and the motion compensated predictor for a current boundary pixel are combined using weighting factors to form a final predictor for the current pixel.
Abstract:
A method and apparatus for sample adaptive offset (SAO) compensation of reconstructed video data are disclosed. In one embodiment, the relation between the current pixel and said one or more neighboring pixels is stored so that the SAO compensated current pixel can replace the current pixel without buffering the to-be-processed pixels for classification. The SAO process may be performed on a region by region basis to adapt to the local characteristics of the picture.
Abstract:
A method and apparatus for scalable video coding are disclosed, wherein the video data is configured into a Base Layer (BL) and an Enhancement Layer (EL) and wherein the EL has higher spatial resolution or better video quality than the BL. According to embodiments of the present invention, information from the base layer is exploited for coding the enhancement layer. The information coding for the enhancement layer includes CU structure, motion information, motion information, MVP/merge candidates, intra prediction mode, residual quadtree information, texture information, residual information, context adaptive entropy coding, Adaptive Lop Filter (ALF), Sample Adaptive Offset (SAO), and deblocking filter.
Abstract:
Method and apparatus of video coding are disclosed. According to one method, in the decoder side, a predefined Intra mode is assigned to a neighboring block adjacent to the current luma block when the neighboring block satisfies one or more conditions. An MPM (Most Probable Mode) list is derived based on information comprising at least one of neighboring Intra modes. A current Intra mode is derived utilizing the MPM list. The current luma block is decoded according to the current Intra mode According to another method, a predefined Intra mode is assigned to a neighboring block adjacent to the current luma block if the neighboring block is coded in BDPCM (Block-based Delta Pulse Code Modulation) mode, where the predefined Intra mode is set to horizontal mode or vertical mode depending on prediction direction used by the BDPCM mode.