Abstract:
A portable device is utilized to execute a vibration detecting method. The portable device includes a vibration detecting module and a computing unit. The vibration detecting module is adapted to detect a vibration signal. The computing unit is electrically connected to the vibration detecting module and adapted to analyze the vibration signal to acquire a related vibration parameter, so as to actuate an application program of the portable device accordingly.
Abstract:
A data processing system has a first data processing apparatus and a second data processing apparatus. The first data processing apparatus has at least a camera sensor, a compressor and an output interface. The camera sensor generates first input multimedia data. The compressor compresses the first input multimedia data into compressed multimedia data. The output interface packs compressed multimedia data into a bitstream. The second data processing apparatus has at least an input interface, a data access circuit, and a de-compressor. The input interface un-packs the bitstream into second input multimedia data. The data access circuit stores second input multimedia data into a multimedia buffer and reads buffered multimedia data from the multimedia buffer. The de-compressor de-compresses buffered multimedia data. Alternatively, one of the compressor and the decompressor may be implemented in a third data processing apparatus coupled between the first data processing apparatus and the second data processing apparatus.
Abstract:
A data processing apparatus has a compressor and an output interface. The compressor receives an input display data, and generates an output display data according to the input display data. The output interface packs the output display data into an output bitstream, and outputs the output bitstream via a display interface. The compressor adaptively adjusts a compression algorithm applied to the input display data according to visibility of compression artifacts. By way of example, the display interface may be a display serial interface (DSI) standardized by a Mobile Industry Processor Interface (MIPI) or an embedded display port (eDP) standardized by a Video Electronics Standards Association (VESA).
Abstract:
A data processing apparatus includes a compressor and an output interface. The compressor generates a compressed display data by compressing a display data according to a compression algorithm. The output interface appends first indication information in a first output bitstream, appends second indication information in a second output bitstream, and outputs the first output bitstream and the second output bitstream via a display interface. The first output bitstream is derived from the compressed display data. The first indication information is set in response to the compression algorithm employed by the compressor. The first indication information is different from the second indication information. The display interface is arranged for coupling to a driver circuit.
Abstract:
A data processing apparatus includes a compression circuit and a first output interface. The compression circuit generates a plurality of compressed pixel data groups by compressing pixel data of a plurality of pixels of a picture based on a pixel data grouping setting of the picture, and generates indication information indicative of at least one boundary each between consecutive compressed pixel data groups. The first output interface packs the compressed pixel data groups into at least one output bitstream, and outputs the at least one output bitstream via a camera interface.
Abstract:
A data processing apparatus includes a compression circuit, a rate controller, and an output interface. The compression circuit generates compressed pixel data groups, each derived from applying a compression operation to pixel data of a pixel group, wherein the pixel group includes a portion of a plurality of pixels in a picture. The rate controller applies bit rate control to each compression operation, wherein the rate controller adjusts the bit rate control according to a position of each pixel boundary between different pixel groups. The output interface outputs the compressed pixel data groups via a plurality of camera ports of a camera interface, respectively.
Abstract:
A data processing apparatus includes a compression circuit and an output interface. The compression circuit generates a plurality of compressed pixel data groups by compressing pixel data of a plurality of pixels of a picture based on a pixel data grouping setting of the picture. The output interface records indication information in an output bitstream, and outputs the output bitstream via a display interface. The output bitstream is derived from the compressed pixel data groups. The indication information is set in response to the pixel data grouping setting employed by the compression circuit.
Abstract:
An image encoding method with rate control includes at least the following steps: defining a plurality of candidate bit budgets corresponding to different pre-defined maximum encoded bit lengths for one coding unit respectively; when encoding pixel data of a plurality of pixels within a current coding unit of an access unit of a frame, determining a target bit budget selected from the candidate bit budgets and allocating the target bit budget to the current coding unit; and outputting encoded pixel data of the pixels within the current coding unit that is generated from the encoder, wherein a bit length of the encoded pixel data is smaller than or equal to the target bit budget.
Abstract:
A data processing apparatus has a compressor and an output interface. The compressor generates a compressed multimedia data by compressing a multimedia data according to a compression algorithm. The output interface records indication information in an output bitstream, and outputs the output bitstream via a camera interface, wherein the output bitstream is derived from the compressed multimedia data, and the indication information is set in response to the compression algorithm employed by the compressor. Another data processing apparatus has a de-compressor and an input interface. The de-compressor de-compresses a compressed multimedia data derived from an input bitstream. The input interface receives the input bitstream via a camera interface, parses indication information included in the input bitstream, and configures the de-compressor to employ a de-compression algorithm as indicated by the indication information.
Abstract:
A data processing apparatus has a compressor and an output interface. The compressor receives an input multimedia data, and generates an output multimedia data according to the input multimedia data. The output interface packs the output multimedia data into an output bitstream, and outputs the output bitstream via a camera interface. The compressor adaptively adjusts a compression algorithm applied to the input multimedia data according to at least one sensor input signal. For example, the at least one sensor input signal is generated from at least one of an ambient light sensor, a proximity sensor, a thermal sensor, an accelerometer, a gyroscope, and a receiver of a global navigation satellite system. Alternatively, the compressor may be configured to adaptively adjust the compression algorithm applied to the input multimedia data according to a sensor configuration of a camera sensor or a display configuration of a display apparatus.