Abstract:
A method of predicting a motion vector for a current block in a current picture includes obtaining, by the moving picture decoding device, at least three motion vectors for at least three blocks other than the current block based on a direction of a reference picture, wherein the direction of the reference picture is based on a display order of the reference picture and a display order of the current picture, and the at least three blocks are not in an intra mode and predicting, by the moving picture decoding device, the motion vector for the current block by using a median operation of the at least three motion vectors.
Abstract:
A method of predicting a motion vector for a current block in a current picture includes obtaining, by the moving picture decoding device, at least three motion vectors for at least three blocks other than the current block based on a direction of a reference picture, wherein the direction of the reference picture is based on a display order of the reference picture and a display order of the current picture, the at least three motion vectors correspond to the at least three other blocks, respectively, and the at least three blocks are not in an intra mode, predicting, by the moving picture decoding device, the motion vector for the current block by using a median operation of the at least three motion vectors and decoding the current block in the current picture using the predicted motion vector for the current block.
Abstract:
A method of predicting a motion vector for a current block in a current picture includes obtaining, by the moving picture decoding device, at least three motion vectors for at least three blocks other than the current block based on a direction of a reference picture, wherein the direction of the reference picture is based on a display order of the reference picture and a display order of the current picture, predicting, by the moving picture decoding device, the motion vector for the current block by using a median operation of the at least three motion vectors and decoding the current block in the current picture using the predicted motion vector for the current block.
Abstract:
The present invention relates to a method for using interlaced video signal of a base layer in interlayer texture prediction. The present method separates interaced video signal of a base layer into even-field and odd-field components, interpolates the even-field and the odd-field components respectively in vertical and/or horizontal direction, and constructs a combined video data by interleaving the interpolated even-field and odd-field components.
Abstract:
In one embodiment, the method includes determining a motion vector of a current image block equal to a motion vector of an image block based on a reference picture index indicating a reference picture for the image block. For example, the motion vector of the current image block may be equal to the motion vector of the image block if the reference picture index indicates a long-term reference picture for the image block.
Abstract:
In one embodiment, a method for a moving picture coding system to derive at least one motion vector of a bi-predictive block in a current picture from a motion vector of a first block in a first picture includes selecting, by the moving picture coding system, a list 1 motion vector of the first block in the first picture as a motion vector for deriving list 0 and list 1 motion vectors of the bi-predictive block if the first block only has the list 1 motion vector, the first picture being permitted to be located temporally before the current picture and permitted to be located temporally after the current picture, scaling the selected motion vector and deriving the list 0 and list 1 motion vectors of the bi-predictive block based on the scaled motion vector.
Abstract:
In one embodiment, the method includes determining a motion vector of a current image block equal to a motion vector of an image block based on a reference picture index indicating a reference picture for the image block. For example, the motion vector of the current image block may be equal to the motion vector of the image block if the reference picture index indicates a long-term reference picture for the image block.
Abstract:
A block prediction method using improved direct mode for B picture in a moving picture coding system obtains forward and backward motion vectors of direct mode, obtains two distinct motion-compensated blocks using the forward and backward motion vectors, and predicts a block of the B picture which is about to be coded (or decoded) presently by applying an interpolative prediction to the above blocks, and thereby, accuracy of the predicted block can be improved and the coding efficiency also can be improved.
Abstract:
In one embodiment, the method includes determining, by a moving picture coding system, motion vectors of the bi-predictive image block based on a type of the first reference picture. The type is one of a long-term type and a short-term type, and characterizes a temporal distance of the first reference picture with respect to the bi-predictive block. The motion vectors of the bi-predictive image block are determined according to a first set of expressions if the first reference picture is of the short-term type, and according to a second set of expressions if the first reference picture is of the long-term type. The second set of expressions is different than the first set of expressions. The method further includes decoding the bi-predictive image block by using the first reference picture and the second reference picture based on the determined motion vectors.
Abstract:
A method and an apparatus of decoding a video signal are provided. The present invention includes the steps of parsing first coding information indicating whether a residual data of an image block in the enhanced layer is predicted from a corresponding block in the base layer, from the bitstream of the enhanced layer, and decoding the video signal based on the first coding information. And, the step of parsing includes the step of performing modeling of the first coding information based on second coding information indicating whether prediction information of the corresponding block in the base layer is used to decode the image block in the enhanced layer. Accordingly, the present invention raises efficiency of video signal processing by enabling a decoder to derive information on a prediction mode of a current block in a decoder instead of transferring the information to the decoder.