Abstract:
A surface cooler includes a conduit, a body having an external surface, and a plurality of fin members arranged in an array of fin members. The conduit defines an inlet, an outlet, and an internal flow path extending between the inlet and the outlet. The conduit is configured to channel a flow of fluid to be cooled from the inlet to said outlet. The conduit extends through the body. Each fin member of the array of fin members extends from the external surface of the body. Each fin member is fabricated from a thermally conductive resilient and pliable material.
Abstract:
A system is disclosed. The system includes a thermally conductive enclosure bounding an interior cavity, a metallic cell wall structure disposed within the cavity, in thermal communication with the enclosure, and defining a plurality of cells, and a phase change material disposed within the cells and in thermal communication with the cell walls. The plurality of cells have a cell width less than about 5 millimeters, and the cell wall thickness of the cell wall structure is in a range from about 0.25 millimeter to about 1 millimeter.
Abstract:
A heat exchanger apparatus including a surface cooler and a passive automatic retraction and extension system coupled to the surface cooler. The surface cooler having disposed therein one or more fluid flow channels configured for the passage therethrough of a heat transfer fluid to be cooled. The heat transfer fluid in a heat transfer relation on an interior side of said one or more fluid flow channels. The surface cooler including a plurality of fins projecting from an outer surface thereof. The passive automatic retraction and extension system including a thermal actuation component responsive to a change in temperature of at least one of the heat transfer fluid and a cooling fluid flow so as to actuate a change in a geometry of the surface cooler. Further disclosed is an engine including the heat exchanger apparatus.
Abstract:
A permanent magnet machine, a rotor assembly for the machine, and a pump assembly. The permanent magnet machine includes a stator assembly including a stator core configured to generate a magnetic field and extending along a longitudinal axis with an inner surface defining a cavity and a rotor assembly including a rotor core and a rotor shaft. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further including a plurality of permanent magnets for generating a magnetic field which interacts with the stator magnetic field to produce torque. The permanent magnets configured as one of internal or surface mounted. The rotor assembly also including a plurality of retaining clips configured to retain the plurality of permanent magnets relative to the rotor core. The pump assembly including an electric submersible pump and a permanent magnet motor for driving the pump.
Abstract:
A chassis with distributed jet cooling is provided. The chassis includes one or more sidewalls defining a volume configured to substantially surround one or more heat generating components positioned within the volume. The chassis further includes at least one array of fins thermally coupled to a respective one of the one or more sidewalls and at least one synthetic jet assembly comprising a multi-orifice synthetic jet or a number of single orifice synthetic jets disposed on a side of a respective one of the array(s) of fins. The chassis further includes at least one attachment means for attaching a respective one of the at least one synthetic jet assemblies to a respective one of the one or more sidewalls.
Abstract:
A heat transfer assembly for controlling heat transfer of a turbine engine is provided. The turbine engine includes a housing and includes a compressor, a combustor and a turbine located within the housing. The heat transfer assembly includes a flow control device having a sidewall coupled to the turbine, the sidewall is in flow communication with a compressor vane. The sidewall is configured to define a first flow path from the compressor vane to a turbine vane and a second flow path from the compressor vane to a turbine blade. A heat exchanger is coupled to the housing and located between the compressor and the turbine, wherein the heat exchanger is in flow communication with at least one of the first flow path and the second flow path. A fluid supply device is coupled to the housing and in flow communication with the heat exchanger.
Abstract:
An integrated inducer heat exchanger is provided. The integrated inducer heat exchanger includes multiple airfoil devices disposed in an annular array within an inner circular casing and an outer circular casing forming multiple passages for allowing a flow of fluid from a forward side to an aft side of the integrated inducer heat exchanger. The integrated inducer heat exchanger also includes multiple annular manifolds arranged about the outer circular casing configured for supplying a flow of coolant at low temperature from one or more coolant sources and returning the flow of coolant at high temperature to the one or more coolant sources via an external heat exchanger for dissipating heat and multiple transfer tubes connecting the multiple annular manifolds with the multiple airfoil devices for transferring the flow of coolant within the airfoil devices for exchanging heat between the coolant and the fluid passing through the multiple passages.
Abstract:
A modular synthetic cooling jet apparatus for cooling at least one electronic component and including a first synthetic cooling jet is provided. The first synthetic cooling jet includes a first piezoelectric element, and a first pair of plates coupled to the first piezoelectric element. The first pair of plates includes a first top plate and a first bottom plate. The first synthetic cooling jet also includes a first air gap defined between the first top plate and the first bottom plate. The first flex circuit is coupled to the first piezoelectric element. The first flex circuit is configured to be coupled to an electrical power source and to transmit a first electrical signal to the first piezoelectric element. The first piezoelectric element is configured to actuate at least one of the first top plate and the first bottom plate to induce a first expelling air stream.
Abstract:
A heat transfer assembly for controlling heat transfer of a turbine engine is provided. The turbine engine includes a housing and includes a compressor, a combustor and a turbine located within the housing. The heat transfer assembly includes a flow control device having a sidewall coupled to the turbine, the sidewall is in flow communication with a compressor vane. The sidewall is configured to define a first flow path from the compressor vane to a turbine vane and a second flow path from the compressor vane to a turbine blade. A heat exchanger is coupled to the housing and located between the compressor and the turbine, wherein the heat exchanger is in flow communication with at least one of the first flow path and the second flow path. A fluid supply device is coupled to the housing and in flow communication with the heat exchanger.
Abstract:
A chassis with distributed jet cooling is provided. The chassis includes one or more sidewalls defining a volume configured to substantially surround one or more heat generating components positioned within the volume. The chassis further includes at least one array of fins thermally coupled to a respective one of the one or more sidewalls and at least one synthetic jet assembly comprising a multi-orifice synthetic jet or a number of single orifice synthetic jets disposed on a side of a respective one of the array(s) of fins. The chassis further includes at least one attachment means for attaching a respective one of the at least one synthetic jet assemblies to a respective one of the one or more sidewalls.