Delivery drop platforms, tethers, and stabilization

    公开(公告)号:US11407511B1

    公开(公告)日:2022-08-09

    申请号:US15954482

    申请日:2018-04-16

    Abstract: An unmanned aerial vehicle (UAV) can deliver a package to a delivery destination. Packages delivered by a UAV may be lowered towards the ground while the UAV continues to fly rather than the UAV landing on the ground and releasing the package. Packages may sway during lowering as a result of wind or movement of the UAV. A package sway may be monitored and mitigated by rapidly paying out a tether, when using a winch mechanism, to dissipate the energy of the sway as downward energy. Further, the UAV may navigate in the direction of the sway or reduce the altitude of the UAV to dissipate the energy of the sway. Open-loop and/or closed loop drop techniques may be utilized to lower a package from the UAV, and the package may be released in the air or on the ground.

    Tether compensated airborne delivery

    公开(公告)号:US10647427B2

    公开(公告)日:2020-05-12

    申请号:US15471607

    申请日:2017-03-28

    Abstract: A tether compensated unmanned aerial vehicle (UAV) is described. In one embodiment, the UAV includes a winch with a tether to lower an item from the UAV for delivery, a tether compensation mechanism configured to contact the tether as it extends from the winch, and a flight controller to control a flight path of the UAV. The flight controller is also configured to direct the tether compensation mechanism to clamp the tether based on the flight path of the UAV. Further, based on movement identified in the tether using a sensor, a tether response controller can determine a complementary response and direct the tether compensation mechanism to brace the tether against the movement. Thus, the tether compensation mechanism can help stabilize sway or movement in the tether, which can help prevent the tether from undesirable swinging.

    Unmanned aerial vehicle sensor calibration validation before flight

    公开(公告)号:US10220964B1

    公开(公告)日:2019-03-05

    申请号:US15188894

    申请日:2016-06-21

    Abstract: This disclosure describes systems, methods, and apparatus for automating the verification of aerial vehicle sensors as part of a pre-flight, flight departure, in-transit flight, and/or delivery destination calibration verification process. At different stages, aerial vehicle sensors may obtain sensor measurements about objects within an environment, the obtained measurements may be processed to determine information about the object, as presented in the measurements, and the processed information may be compared with the actual information about the object to determine a variation or difference between the information. If the variation is within a tolerance range, the sensor may be auto adjusted and operation of the aerial vehicle may continue. If the variation exceeds a correction range, flight of the aerial vehicle may be aborted and the aerial vehicle routed for a full sensor calibration.

    Systems and methods for unmanned aerial vehicle object avoidance

    公开(公告)号:US10109204B1

    公开(公告)日:2018-10-23

    申请号:US15482570

    申请日:2017-04-07

    Abstract: This disclosure is directed to a detection and avoidance apparatus for an unmanned aerial vehicle (“UAV”) and systems, devices, and techniques pertaining to automated object detection and avoidance during UAV flight. The system may detect objects within the UAV's airspace through acoustic, visual, infrared, multispectral, hyperspectral, or object detectable signal emitted or reflected from an object. The system may identify the source of the object detectable signal by comparing features of the received signal with known sources signals in a database. The features may include, for example, an acoustic signature emitted or reflected by the object. Furthermore, a trajectory envelope for the object may be determined based on characteristic performance parameters for the object such as cursing speed, maneuverability, etc. The UAV may determine an optimized flight plan based on the trajectory envelopes of detected objects within the UAV's airspace.

    Transportation network utilizing multiple autonomous vehicles to transport items between network locations

    公开(公告)号:US10068486B1

    公开(公告)日:2018-09-04

    申请号:US15697410

    申请日:2017-09-06

    Abstract: A transportation network is provided that utilizes autonomous vehicles (e.g., unmanned aerial vehicles) for identifying, acquiring, and transporting items between network locations without requiring human interaction. A travel path for an item through the transportation network may include multiple path segments and corresponding intermediate network locations, with a different autonomous vehicle utilized to transport the item along each path segment. Different possible next network locations for a travel path may selected based on transportation factors such as travel time, cost, safety, etc. (e.g., as may be related to distance, network congestion, inclement weather, etc.). Local processing (e.g., by a control system of an autonomous vehicle) may perform the selection of a next network location for a travel path (e.g., allowing multiple autonomous vehicles to simultaneously engage and depart with items or otherwise travel without having to contact and wait for instructions from centralized system components, etc.).

Patent Agency Ranking