Abstract:
A nanowire light emitting device and method of fabricating the same. The nanowire light emitting device includes: a substrate; a first electrode layer formed on the substrate; a plurality of nanowires vertically formed on the first electrode layer, the nanowire having a p-type doped portion and an n-type doped portion formed separately from each other on both sides thereof; a light emitting layer formed between the p-type doped portion and the n-type doped portion; and a second electrode layer formed on the nanowires, wherein the p-type doped portion is formed by chemically binding a radical having an only half-occupied outermost orbital shell to a corresponding surface of the respective nanowires so as to donate an electron to the radical.
Abstract:
The present invention relates to a gate structure of a flash memory cell and method of forming the same, and method of forming a dielectric film. The method of forming the dielectric film in the flash memory cell comprises the steps of preparing a wafer including a tunnel oxide film formed in a given region of a semiconductor substrate, a polysilicon film formed on the tunnel oxide film, and an oxide film and a silicon nitride film formed on the polysilicon film; preparing a work cell in which a voltage is applied to the rear side of the semiconductor substrate used as a work electrode in which the silicon nitride film is formed, a relative electrode and a reference electrode are kept by a given distance so that they can be immersed in electrolyte, and in which an ultraviolet rays source is formed on an upper side to illuminate an ultraviolet rays to a work electrode; and performing electro-chemical etch using silicon dissociation reaction for the wafer mounted on the work cell to form porosities in the silicon nitride film.
Abstract:
An LCD device with a digitizer and a method for manufacturing the same is disclosed, which has a stable insertion structure of a digitizer to an LCM, thereby obtaining thin profile and lightness of the LCD device, and improving yield. Also, in the LCD device with the digitizer according to the present invention, a reflecting means is formed for being integrated with the digitizer.
Abstract:
According to one embodiment, a magnetic memory includes a cell transistor including a first source/drain diffusion layer and a second source/drain diffusion layer, a first contact on the first source/drain diffusion layer, a memory element on the first contact, and a second contact on the second source/drain diffusion layer, the second contact including a first plug on the second source/drain diffusion layer, and a second plug on the first plug.
Abstract:
A large-scale imprint apparatus includes a roll-to-roll unit configured to wind or rewind a flexible substrate, a stage arranged adjacent to a winding path of the flexible substrate, the stage being configured to support a stamp master with a master pattern or to support a substrate, and a stamping pressing unit arranged adjacent to the stage, the stamping pressing unit being configured to press the flexible substrate against the stamp master or against the substrate.
Abstract:
Graphene electronic devices may include a gate electrode on a substrate, a first gate insulating film covering the gate electrode, a plurality of graphene channel layers on the substrate, a second gate insulating film between the plurality of graphene channel layers, and a source electrode and a drain electrode connected to both edges of each of the plurality of graphene channel layers.
Abstract:
A graphene electronic device includes a graphene channel layer on a substrate, a source electrode on an end portion of the graphene channel layer and a drain electrode on another end portion of the graphene channel layer, a gate oxide on the graphene channel layer and between the source electrode and the drain electrode, and a gate electrode on the gate oxide. The gate oxide has substantially the same shape as the graphene channel layer between the source electrode and the drain electrode.
Abstract:
A resistance variable memory device includes: a first electrode; a second electrode; a resistance variable layer interposed between the first electrode and the second electrode; and nano particles that are disposed in the resistance variable layer and have a lower dielectric constant than the resistance variable layer.
Abstract:
A memory system is provided includes a host processor, and a plurality of cascade connected memory cards connected to the host processor. Each of the memory cards stores a same default relative card address (RCA) prior to initialization of the memory system. The host processor is configured to sequentially access each memory card using the default RCA, and to change the default RCA to a unique RCA upon each sequential access.
Abstract:
The present invention relates to a method of fabricating a semiconductor device. According to the method, a first insulating layer having a contact hole formed therein is formed over a semiconductor substrate. A second insulating layer is gap filled within the contact hole. A third insulating layer having a trench formed therein is formed over the semiconductor substrate including the contact hole. The second insulating layer gap filled within the contact hole is removed. A contact plug and a bit line are formed within the contact hole and the trench.