Electron Induced Dissociation Devices and Methods

    公开(公告)号:US20220399198A1

    公开(公告)日:2022-12-15

    申请号:US17753922

    申请日:2020-09-29

    Inventor: Takashi Baba

    Abstract: Pole electrodes (150) are disclosed for use in an ion reaction apparatus, e.g., an electron induced dissociation cell, to reduce fouling due to polymer build-up and increase the useful lifetime of such electrodes. To reduce fouling, the novel pole electrode designs include a X-shaped aperture (160) in lieu of the conventional central circular aperture. The pole electrodes are particularly useful in systems having a plurality of branched electrodes (152) defining a first axis for controlled passage of charged ions and a transverse axis for passage of an electron beam. The pole electrodes are adapted for disposition between an electron source and the branched electrodes to provide an aperture for passage of an electron beam while also impeding escape of ions and reaction products from the apparatus. The X-shaped aperture eliminates or reduces the portion of the pole electrode surface that is most prone to fouling by polymeric build-up.

    Ion guide with varying multipoles
    62.
    发明授权

    公开(公告)号:US11515137B2

    公开(公告)日:2022-11-29

    申请号:US17242040

    申请日:2021-04-27

    Abstract: An ion guide includes electrodes elongated along an axis from an entrance end to an exit end and spaced around the axis to surround an interior. The electrodes have polygonal shapes with inside surfaces disposed at a radius from the axis and having an electrode width tangential to a circle inscribed by the electrodes. An aspect ratio of the electrode width to the radius varies along the axis. The electrodes are configured to generate a two-dimensional RF electrical field in the interior having a multipole composition comprising one or more lower-order multipole components and one or more higher-order multipole components and varying along the axis in accordance with the varying aspect ratio, and having an RF voltage amplitude that varies along the axis.

    MASS SPECTROMETRY APPARATUS
    63.
    发明申请

    公开(公告)号:US20220367167A1

    公开(公告)日:2022-11-17

    申请号:US17663074

    申请日:2022-05-12

    Abstract: A method of operating an inductively coupled plasma mass spectrometry apparatus for analyzing an analyte sample, the mass spectrometry apparatus including a plasma ion source, a mass analyzer and an interface arrangement positioned between the plasma ion source and the mass analyzer of the mass spectrometer, the interface arrangement at least including an interface structure, including a sampling or skimmer cone, and at least one passage with an inlet and an outlet into a reaction zone, the method including: generating a plasma using the plasma ion source and forming a plasma flux to flow towards the mass analyzer; supplying the analyte sample into the reaction zone via the passage such that the analyte sample interacts with the plasma flux; and analyzing the analyte sample using the mass analyzer.

    Practical ion mobility spectrometer apparatus and methods for chemical and/or biological detection

    公开(公告)号:US11460440B2

    公开(公告)日:2022-10-04

    申请号:US17063636

    申请日:2020-10-05

    Applicant: Ching Wu

    Inventor: Ching Wu

    Abstract: The present invention relates to a preconcentrator for vapors and particles collected from air. The vapor preconcentrator is made from plural layer of coils. The coil is made of resistance alloy. The pitch size of the coil is made to precisely trap/filter out certain size of the particles during preconcentration. Multiple coils could be made with different pitch sizes to achieve multiple step filtrations. When the sample flow enters the preconcentrator chamber, it passes through the coils. The particles of different sizes are trapped on different layer of coils. The vapor sample can be trapped on any coils when interacted with the coil surface. They could be trapped without any affinitive coating as the preconcentrator is at relatively low temperature. Different coils or different sections of the coil can be coated with different material to trap chemicals of different classes. During the desorption process, the coils are flash heated with controlled temperature ramping speed to evaporate the trapped chemicals. Various configurations, constructions, and methods of operation are presented.

    DUAL-FREQUENCY RF ION CONFINEMENT APPARATUS

    公开(公告)号:US20220301845A1

    公开(公告)日:2022-09-22

    申请号:US17713550

    申请日:2022-04-05

    Abstract: An ion mobility separator comprises an RF-device for transversely confining ions in an ion region using: (a) a first set of electrodes arranged parallel to one another along a direction of ion travel to define a first transverse boundary of the ion region, and that are supplied with a first RF-voltage such that different phases of the first RF-voltage are applied to adjacent electrodes of the first set; and (b) a second set of electrodes arranged parallel to one another along said direction of ion travel to define a second transverse boundary of the ion region, and that are supplied with a second RF-voltage such that different phases of the second RF-voltage are applied to adjacent electrodes of the second set, the first and second transverse boundaries being substantially opposite each other in a transverse direction of the ion region and the first and second RF voltages having different frequencies.

    Improved Electrode Arrangement
    66.
    发明申请

    公开(公告)号:US20220293409A1

    公开(公告)日:2022-09-15

    申请号:US17830984

    申请日:2022-06-02

    Abstract: The present invention provides an electrode arrangement 10, 10′ for an ion trap, ion filter, an ion guide, a reaction cell or an ion analyser. The electrode arrangement 10, 10′ comprises an RF electrode 12a, 12b, 12a′, 12b′ mechanically coupled to a dielectric material 11. The RF electrode 12a, 12b, 12a′, 12b′ is mechanically coupled to the dielectric material 11 by a plurality of separators 13 that are spaced apart and configured to define a gap between the RF electrode 12a, 12b, 12a′, 12b′ and the dielectric material 11. Each of the plurality of separators 13 comprises a projecting portion 13b and the dielectric material 11 comprises corresponding receiving portions 11a such that on coupling of the RF electrode 12a, 12b, 12a′, 12b′ to the dielectric material 11, the projecting portion 13b of each separator 13 is received within the corresponding receiving portion 11a of the dielectric material 11. The present invention also relates to an ion trap comprises the electrode arrangement 10, 10′ and a method of manufacturing the electrode arrangement 10, 10′.

    Ion filtering devices
    68.
    发明授权

    公开(公告)号:US11415547B2

    公开(公告)日:2022-08-16

    申请号:US17274877

    申请日:2019-09-10

    Abstract: A method of filtering ions according to their ion mobility using a device is disclosed, the method comprising a plurality of electrodes and one or more voltage source(s) arranged and adapted to apply voltages to the plurality of electrodes, the method comprising, generating using the one or more voltage source(s) one or more local separation region(s), wherein ions can be separated within each local separation region according to their ion mobility, and moving each local separation region axially along the device with a certain velocity such that, for each local separation region, ions having a value of their ion mobility falling within a selected range are transmitted axially along the device with that local separation region whereas ions having higher and/or lower ion mobility falling outside that range escape the local separation region, wherein any ions that escape the local separation region(s) are removed from within the device and/or otherwise kept apart from those ions falling within the selected range(s).

    INCREASED DYNAMIC RANGE FOR THE ATTENUATION OF AN ION BEAM

    公开(公告)号:US20220254619A1

    公开(公告)日:2022-08-11

    申请号:US17622568

    申请日:2020-07-22

    Abstract: In one aspect, a method of modulating transmission of ions in a mass spectrometer is disclosed, which comprises generating an ion beam comprising a plurality of ions, directing the ion beam to an ion optic positioned in the path of the ion beam, wherein the ion optic includes at least one opening through which the ions can pass, and applying one or more voltage pulses at a selected duty cycle to said ion optic so as to obtain a desired attenuation of brightness of the ion beam passing through the ion optic, where a pulse width of said voltage pulses at said selected duty cycle is determined by identifying a pulse width on a calibration normalized ion intensity versus pulse width relation for said ions that corresponds to said desired attenuation on an ideal normalized ion intensity versus pulse width relation for said ions.

    Enclosure for ion trapping device
    70.
    发明授权

    公开(公告)号:US11410844B2

    公开(公告)日:2022-08-09

    申请号:US16950607

    申请日:2020-11-17

    Abstract: Devices, methods, and systems for enclosures for an ion trapping device are described herein. One enclosure for an ion trapping device includes a heat spreader base that includes a plurality of apertures. The ion trapping device may also include a grid array having a plurality of pins extending outward from a surface of the grid array. The apertures of the heat spreader base may be arranged such that the plurality of pins passes through the plurality of apertures.

Patent Agency Ranking