System for paver support and method for installation of same

    公开(公告)号:US10407836B1

    公开(公告)日:2019-09-10

    申请号:US15978710

    申请日:2018-05-14

    申请人: Anthony Vani

    发明人: Anthony Vani

    摘要: A system for supporting a paver layer that includes a layer of sand, a concrete layer, a base, drain pipes, and a gravel layer. The layer of sand, the concrete layer and the concrete layer are each formed in a substantially horizontal direction, with the layer of sand being formed above the concrete layer and the concrete layer being formed above the base. The drain pipes are provided in a substantially vertical orientation, with an upper end of each drain pipe provided within or slightly below the concrete layer.

    Use of metal silicides in hydrocarbon production and transportation

    公开(公告)号:US10024500B2

    公开(公告)日:2018-07-17

    申请号:US15672495

    申请日:2017-08-09

    摘要: A method of hydraulic fracturing is provided which uses metal silicides to generate significant pressure inside a wellbore. The method comprises injecting a fracturing fluid and an aqueous or reacting fluid into the wellbore to react with the fracturing fluid. The fracturing fluid comprises metal silicide, which may be uncoated or coated, and hydrocarbon fluid. The reacting fluid comprises water or a solvent. A method of removing buildup in pipelines such as subsea pipelines which uses metal silicides to generate heat and pressure inside the pipeline is also provided. The method comprises injecting an organic slug and an aqueous slug. The organic slug comprises metal silicide and hydrocarbon fluid. The aqueous slug comprises water. Alternatively, there is also provided a method for purifying flowback water produced from a hydraulic fracturing process comprising adding metal silicide to the flowback water produced from a hydraulic fracturing process.

    Processes for Coating the Interior Surfaces of Nonmetal Pipes

    公开(公告)号:US20180133754A1

    公开(公告)日:2018-05-17

    申请号:US15863346

    申请日:2018-01-05

    摘要: Methods and systems for providing cleaning and providing barrier coatings to interior wall surfaces of small diameter nonmetal and composite piping systems in buildings, swimming pools, underground pipes, in-slab piping systems, piping under driveways and various liquid transmission lines. An entire piping system can be cleaned in one single pass by dry particulates forced by air throughout the building piping system by an external generator, and the entire piping system can be coated in one single pass by a machine connected exterior to the piping system. Small pipes can be protected by the effects of water corrosion, erosion and electrolysis, extending the life of piping systems such as plastics, PVC (polyvinyl chloride), composite materials, polybutylene. Coatings can be applied to pipes having diameters of approximately ⅜″ up to approximately 6″ so that entire piping systems such as potable water lines, natural gas lines, HVAC piping systems, drain lines, and fire sprinkler systems in single-family homes to apartments to high-rise hotel/resort facilities and office towers, apartment and condominium buildings and schools, can be cleaned and coated to pipes within existing walls. The coating forms at least a 4 mils or greater covering inside of pipes. Buildings can return to service within approximately 24 to approximately 96 hours.

    Dynamic deoxygenation of water for fire protection system

    公开(公告)号:US09616262B2

    公开(公告)日:2017-04-11

    申请号:US14599723

    申请日:2015-01-19

    摘要: A corrosion prevention treatment of wet Fire Protection System (FPS) includes purging the pipes of O2 with an inert gas such as N2, followed by filling the pipes with deoxygenated water generated “on the fly” as the water enters a building, using one or more Gas Transfer Membrane (GTM) devices and N2 gas. The GTM device eliminates the need for a water reuse tank and its associated pipes, valves, recirculation regimen, and the like. Water is pumped directly from the building water supply to a GTM device, where it is deoxygenated to very low O2 levels—such as below 300 ppb (parts per billion). The deoxygenated water then flows directly into the O2-purged pipes of the FPS. When the FPS is drained for testing or repair, the deoxygenated water may be discharged, and replaced, upon return to service of the FPS, with water freshly deoxygenated from the building supply as the FPS piping is filled.