Abstract:
A communication channel has a highly linear switched current mixer that incorporates passive filtering (e.g., low pass, notch) for improved transmitting (Tx) and receiving (Rx) with adding external filtering components. A high IIP2 (input referenced second order intercept point) of the receiver at the Tx offset is essential to avoid corrupting the system's sensitivity performance, and a high triple beat (TB) is required to avoid sensitivity degradation due to transmitter leakage. Thanks to the embedded filtering in the mixer and the active post-distortion (APD) method in a low noise amplifier (LNA), the required high linearity is achieved with low noise figure and power consumption, overcoming transmitter power leakage without the use of a SAW (surface acoustic wave) filter.
Abstract:
Aspects of a method and system for a distributed transceiver for high frequency applications may include generating a second signal from a first signal by frequency-translating the first signal via a plurality of conversion stages. Each of the plurality of conversion stages may frequency-translate a corresponding input signal by a local oscillator frequency or by a fraction of said local oscillator frequency, and each of the plurality of conversion stages may comprise a multiplier and a notch filter. The first signal may be the corresponding input signal to an initial stage of a the plurality of conversion stages, an output signal of a previous one of the plurality of conversion stages may be the corresponding input signal to a subsequent one of the plurality of conversion stages, and the second signal may be an output signal of a final stage of the plurality of conversion stages.
Abstract:
A multi-channel RF receiver uses an image rejection mixer (e.g. double quadrature mixer) in the IF down conversion stage for image side band rejection (whereby use of an IF narrow band filter for image rejection may be omitted if desired) and comprises a simplified frequency synthesizer which generates both a “wandering” IF oscillator frequency and an RF oscillator frequency for the up/down conversion stages (being, for down conversion, from RF to IF and from IF to base band. The IF used for a particular RF carrier (channel) is selected so as to be both an integer (N) sub-harmonic of that RF carrier and within the operating frequency band of the image rejection mixer. Advantageously, the synthesizer comprises only one loop and one VCO, wherein the IF oscillator signal is produced from the RF oscillator signal by means of a frequency divider.
Abstract:
The radio-frequency signal frequency conversion device generates intermediate complex signals (IF) for a correlation stage of a low power RF receiver. In order to do this, the device includes a first selective pass-band filter for filtering radio-frequency signals picked up by an antenna. A frequency synthesizer generates first and second high frequency signals, wherein the frequency of the first signals is higher than the frequency of the second signals. This synthesizer receives reference signals from an oscillator unit. A first mixer unit mixes the radio-frequency signals with the first signals in order to generate frequency-converted signals. A second pass-band filter filters the signals from the first mixer unit, and provides signals to a second mixer unit to mix them with the second high frequency signals. Finally, shaping means for the signals provided by the second mixer unit generate the intermediate signals. The second filter is a not very selective active filter, which is integrated, in an RF/IF integrated circuit with the first and second mixer units, the signal shaping means, and certain parts of the synthesizer and the oscillator unit.
Abstract:
A highly integrated terrestrial and cable tuner for receiving digital and analog television signals is disclosed. It achieves high performances in sensitivity, image rejection, dynamic range, channel selectivity and power consumption. A major-images rejection converter disclosed rejects third- and fifth-order images. Thus it significantly relaxes RF filter design in a tuner of a single-stage or a first-stage zero-IF/low-IF downconversion architecture. Different architectures and frequency planning are disclosed in accordance with specifications of TV standards to improve the overall performance of the tuner with a different or configurable IF output. The tuner is integrated by using standard processes, with minimal off-chip components excluding SAW and LC filters. Small tuner modules cost less than discrete (can) tuners. They can be used in digital/analog TV sets and portable and handheld TV devices and for mobile-phone TV reception.
Abstract:
There are provided a transmitter and a wireless communication terminal apparatus using the same for solving a problem of undesired spurs due to harmonics of an output signal of a frequency synthesizer, and further solving a problem of the undesired spurs occurring when the harmonics of an output signal of a crystal oscillator are mixed into a VCO to facilitate to design a circuit or a mounting substrate. The transmitter has a relationship between an output frequency of a PLL frequency conversion circuit (5) and output frequencies of frequency synthesizers (1, 2) stored therein, and the output frequencies of the frequency synthesizers (1, 2) input into the PLL frequency conversion circuit (5) are controlled on the basis of the relationship so that the undesired spurs are suppressed. Thereby, even when the undesired spurs occur in the output of the transmitter due to a crosstalk between circuits or through a substrate, which can be easily suppressed, it is therefore possible to reduce time and cost for redesigning the circuit or the substrate.
Abstract:
A method and system of speech recognition presented by a back channel from multiple user sites within a network supporting cable television and/or video delivery is disclosed. The preferred embodiment of the invention comprises ans system and method of using a back channel containing a multiplicity of identified speech channels from a multiplicity of user sites presented to a speech processing system at a wireline node in a network that supports at least one of cable television delivery and video delivery. One embodiment of the invention comprises a method having the steps of receiving the back channel to create a received back channel; partitioning the received back channel into a multiplicity of received identified speech channels; processing the multiplicity of received identified speech channels to create a multiplicity of identified speech content; and responding to the identified speech content to create an identified speech content response that is unique, for each of the multiplicity of identified speech contents.
Abstract:
The invention provides an up/down converter with low phase noise. Signals from a first local oscillator are fed through a power splitter to first and second mixers. Signals from a second local oscillator and signals from the power splitter are mixed by the second mixer. The frequency component of the difference between the two signals is removed by a first bandpass filter and passed to a third mixer. Input signals are mixed with signals from the power splitter by the first mixer, and the lower frequency component of the output signals from the first mixer is removed by a second bandpass filter and is passed to the third mixer. Signals from the first and second bandpass filters are mixed by the third mixer. The higher frequency component of the output signals is removed by a low pass filter and is output.
Abstract:
A method and system of speech recognition presented by a back channel from multiple user sites within a network supporting cable television and/or video delivery is disclosed.
Abstract:
A communication apparatus is provided which employs two oscillators to generate a transmission signal and a reception signal, and prevents harmful spurious components from being produced. As shown in FIGS. 9A and 9B, the oscillation frequency fVCO2 of a VCO 2 is given by fVCO2=N×(2×fDD), where fDD is the difference between the transmit frequency fT and receive frequency fR. A 3/(2×N) frequency multiplier outputs a signal with a frequency 3×fDD, and a divide-by-N circuit (2/(2×N) frequency multiplier) outputs a signal with a frequency 2×fDD. Thus the transmit intermediate frequency fTIF is given by fTIF=3×fDD, and the receive intermediate frequency fRIF is given by fRIF=2×fDD. The oscillation frequency fVCO1 of a VCO 1 is fCH. The transmit frequency fT is given by fT=fCH+fTIF=fCH+3×fDD. The circuit can prevent a transmission spurious problem to its own reception band.